The Validation and Utilization of PROMs and PREMs for Health Services and Clinical Practice

Rick Sawatzky, PhD, RN
Canada Research Chair in Patient-Reported Outcomes
An “explanatory” perspective of measurement validation

“an integrated evaluative judgment of the degree to which empirical evidence and theoretical rationales support the adequacy and appropriateness of interpretations and actions based on test scores or other modes of assessment”

Challenges and opportunities in patient-reported measurement validation

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validity</td>
<td>Diversity (heterogeneity) - People may not interpret questions in the same way</td>
</tr>
<tr>
<td>Patient Burden</td>
<td>Long lists of questions can be frustrating, time consuming, and burdensome</td>
</tr>
</tbody>
</table>
| **Utilization** | • Selection of appropriate instrument(s)
 • Routine integration into health care
 • Analysis and utilization of information |
Purposes for patient-reported measurement

Health professionals
- At point of care, to inform treatment decisions, monitor patients’ conditions, promote patient-clinician communication, reveal health and quality of life concerns that may otherwise have not been noticed
- Quality improvement and service recovery

Health researchers
- Examine the effectiveness of treatments and the impact of healthcare interventions
- Better understand the impacts of treatments and services on people’s health from their point of view

Health service decision makers
- Evaluate the efficacy, effectiveness and cost-effectiveness of healthcare services and programs

Health care recipients
- Monitor symptoms and concerns and communicate with health care professionals
Validation

diversity and response shift
The Draper-Lindley-de Finetti (DLD) framework of measurement validation

Validation of PROMs

Population heterogeneity (Diversity)
- Differences in how people interpret and respond to questions
- Threatens the comparability of scores across individuals or groups

Response shift
- An individual’s frame of reference may change in response to a health event or intervention
- Threatens the comparability of scores over time
A conventional assumption underlying PROMs is that individuals interpret and respond to questions about their health in the same way, such that scores are equivalently applicable to all people in the population.
The challenge of heterogeneity

Is it reasonable to believe that people from different backgrounds and with different life experiences interpret and respond to questions about their health and quality of life in the same way?

People may respond to QOL and PROM questions in systematically unique ways because of:

- Cultural, developmental, or personality differences
- Contextual factors or life circumstances
- Different health experiences or events

In this situation, the PROMs will produce biased scores that are not comparable across different individuals or groups
Examining the implications of heterogeneity

Latent variable mixture models: a promising approach for the validation of patient reported outcomes

Richard Sawatzky · Pamela A. Ratner · Jacek A. Kopec · Bruno D. Zumbo

Accepted: 7 July 2011
© Springer Science+Business Media B.V. 2011

Abstract
Purpose A fundamental assumption of patient-reported outcomes (PRO) measurement is that all individuals interpret questions about their health status in a consistent manner, such that a measurement model can be constructed that is equivalently applicable to all people in the target measurement model, (b) implications of sample heterogeneity with respect to model-predicted scores (theta), and (c) sources of sample heterogeneity. An example is provided using the 10 items of the Short-Form Health Status (SF-36®) physical functioning subscale with data from the Canadian Community Health Survey (2003) (N = 7,030

SF-36 physical function

<table>
<thead>
<tr>
<th>Physical function items</th>
<th>Response options</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFRC_03 Vigorous activities</td>
<td>0. No limitations</td>
</tr>
<tr>
<td>SFRC_04 Moderate activities</td>
<td>1. Limited a little</td>
</tr>
<tr>
<td>SFRC_05 Lifting or carrying groceries</td>
<td>2. Limited a lot</td>
</tr>
<tr>
<td>SFRC_06 Climbing several flights of stairs</td>
<td></td>
</tr>
<tr>
<td>SFRC_07 Climbing one flight of stairs</td>
<td></td>
</tr>
<tr>
<td>SFRC_08 Bending, kneeling, or stooping</td>
<td></td>
</tr>
<tr>
<td>SFRC_09 Walking more than one kilometer</td>
<td></td>
</tr>
<tr>
<td>SFRC_10 Walking several blocks</td>
<td></td>
</tr>
<tr>
<td>SFRC_11R Walking one block</td>
<td></td>
</tr>
<tr>
<td>SFRC_12R Bathing and dressing</td>
<td></td>
</tr>
</tbody>
</table>

Conventional scoring method*
1. Add all items
2. - 20 (reverses the scale)
3. x 5 (scaled from 0 – 100)
Data from the Canadian Community Health Survey (cycle 2.1) (2003)

<table>
<thead>
<tr>
<th>Description</th>
<th>Repeated cross-sectional national survey of health status, healthcare utilization & health determinants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Canadians 12 years and older</td>
</tr>
<tr>
<td>Coverage</td>
<td>~ 98% of people in 10 provinces and 71% - 97% of people in 3 northern territories.</td>
</tr>
</tbody>
</table>
| **Data collection** | Computer assisted telephone interviewing
Core and optional content (e.g., SF-36) |
| **Sampling methods** | Clustered stratified sampling represents 121 health regions in Canada |
The validation of PROMs in heterogeneous populations

► The cumulative probability of an item response at or above category \(j \) within a latent class can be computed as follows:

\[
P_{ijk}(Y \geq j | \theta, C = k) = \frac{\exp(-\tau_{ijk} + \lambda_{ik} \theta)}{1 + \exp(-\tau_{ijk} + \lambda_{ik} \theta)}.
\]

► Each class has a unique set of parameters that are estimated simultaneously in the latent variable mixture model:

\[
f(x) = \sum_{k=1}^{K} \pi_k f_k(x)
\]

, where \(f \) is the mixture of the class-specific distributions, and \(\pi_k \) is the mixing proportion.

► The cumulative probability of an item response at or above category \(j \) within a latent class can be computed as follows:

\[
P_{ijk}(Y \geq j | \theta, C = k) = \frac{\exp(-\tau_{ijk} + \lambda_{ik} \theta)}{1 + \exp(-\tau_{ijk} + \lambda_{ik} \theta)}.
\]

► The cumulative probability of an item response at or above category \(j \) within a heterogeneous population is obtained by:

\[
P_{ij}(Y \geq j | \theta) = \sum_{k=1}^{K} (X_k \ast P_{ijk}(Y \geq j | \theta))
\]

, where \(X_k \) is the posterior probability of an individual being in class \(k \).
Conventional PROM model

Does your health limit you in any of the following activities:

- Walking one block
- Moderate activities, such as
- Vigorous activities, such as

Physical function
Does your health limit you in any of the following activities:

- Walking one block
- Moderate activities, such as
- Vigorous activities, such as

The measurement model parameters are allowed to vary across two or more latent classes (subsamples):

- item thresholds (difficulty)
- factor loadings (discrimination)
Implications of ignoring heterogeneity on item response theory predicted scores

- Class 1 (n = 5,700)
- Class 2 (n = 602)
- Class 3 (n = 728)
Implications of ignoring heterogeneity on item response theory predicted scores

10% with difference scores ≥ 0.27

10% with difference scores ≤ -0.90

PROM score ignoring heterogeneity

Difference with PROM scores that accommodate heterogeneity
What we have learned to date

The challenge of diversity in the population

People may not interpret and respond to questions about their health and quality of life in the same way.

Differences among people that may explain such inconsistencies include:

- Differences in health experiences
- Differences in age
- Cultural differences
- Gender differences

Application to PRO measurement

Accuracy in PRO measurement is improved when we use approaches that accommodate for differences in how people interpret and respond to PRO questions.
What is response shift?

Schwartz and Sprangers defined response shift as “a change in the meaning of one’s self-evaluation of a target construct as a result of change in”:

- **recalibration**
 - internal standards of measurement

- **reprioritization**
 - values (i.e. the importance of component domains constituting the target construct)

- **reconceptualization**
 - definition of the target construct
Theoretical model of response shift

Fig. 1. A theoretical model of response shift and quality of life (QOL).

Why care about response shift?

- From a validation point of view, it is important to distinguish “true change” from RS change
 - Ignoring RS could lead to measurement bias:
 - Decreased sensitivity to detect change over time
 - Detecting change over time that does not exist

- Contributes to understanding regarding the meaning of scores
 - Unexpected health outcomes

- May want to promote response shift
 - Palliative care
 - Rehabilitation
 - Self-management
 - Other non-curative interventions
Patient burden

need for the efficient collection of PRO data
Patient Burden

Long lists of questions can be frustrating, time consuming, and burdensome

Methods for addressing patient burden

- Appropriate reading difficulty and mode of administration
- Use of short forms
- Computerized adaptive tests (CATs)
Computer adaptive tests

Advantages of CATs:

Only questions that are most likely to be meaningful and relevant to an individual’s condition are administered, based on their responses to prior questions.

• Improved efficiency
• Reduced response burden
• Uniquely targeted to the individual’s conditions
Utilization

clinical practice & health-service decision making
Use of PROMs and PREMs in clinical practice

An electronic system to support the routine integration of quality of life assessments in clinical practice
Benefits of e-QOL assessment instruments

- Reduced patient burden
 - Ease of administration
 - Computer adaptive testing

- Reduced clinician burden
 - Information is automatically analyzed
 - No additional forms to complete

- Enhanced visualization and monitoring of patient concerns through ongoing and immediate feedback

- PROM & PREM information become part of administrative data for program evaluation, cost-effectiveness analysis, resource allocation
Researching the QPSS

How can we best design and integrate electronic quality of life assessments with best-practice recommendations as practice support tools and integrate them into routine acute care for older adults who have advancing chronic life-limiting illnesses and their family caregivers?
QPSS design and implementation
Knowledge-To-Action Framework*

D. Select, tailor & implement interventions

C. Assess barriers to knowledge use

B. Adapt knowledge to local context

E. Monitor knowledge use

A. Identify Problem

F. Evaluate outcomes

G. Sustain knowledge use

Knowledge about the use of PROMs & PREMs

PROMs and PREMs for seriously ill older adults: Results to date

Literature review
- Nearly 200 PROMs and PREMs have been used in this population.
- Our synthesis focuses on categorizing these instruments and providing recommendations for making informed decisions about the selection and utilization of PROMs and PREMs for seriously ill older adults.

Focus groups with clinicians
- Instruments must measure symptoms, physical function and emotional, psychological, and existential concerns.
- Concern regarding potential response burden.
- Importance of distinguishing “screening” and “assessment”.
- Potential for linkage with clinical-reported measurements.
PROMs and PREMs for the seriously ill
Preliminary selection

PREMs for seriously ill older adults

• Canadian Health Care Evaluation Project (CANHELP) Lite
 – Individualized Patient Questionnaire
 – Individualized Family Caregiver Questionnaire

PROMs for seriously ill older adults

For patients

• Edmonton Symptom Assessment System – Revised ESAS-R
• McGill Quality of Life Questionnaire (MQOL)

For family caregivers

• Quality of Life in Life-Threatening Illness (QOLLTI-F)
• Carer Support and Needs Assessment Tool (CSNAT)
Feedback system

Reporting of assessment results
• Graphical displays that present changes in identified concerns over time
• Ranking of areas of most important areas of concerns or needs
• Assessment results must be accessible in “real time” at point of care
• Importance of producing printable reports that can be used in rounds and filed in paper charts

Linkage with current practices
• Integration of prompts for potential interventions to address identified concerns or needs
• Tracking of interventions that have been applied
Use of PROMs in health services administration

Patient-reported outcome measurement (PROMs) and integrated primary and community care (IPCC)

Workshop: January 14th, 2013

Project objective

• “To explore the utility of existing generic instruments for the measurement of patient reported outcomes in obtaining reliable, valid and useful information from patients in assessing the impact of primary and community health care reform initiatives in Canada.”
Project components

• A comprehensive long-list of all generic PROMs
• A shorter-list to include:
 – Patient self-report, truly generic, true assessment of HRQL, developed for adult population
• A short-list, reduced on the basis of citations
• Characteristics of short-listed PROMs
• Review of each instrument’s ‘performance’:
 – Psychometrics
 – Decision-making attributes
• Additional information:
 – Norms, value sets, examples of use of in primary and community care context, other jurisdictions
• Stakeholder engagement and recommendations
Framework for the Review

• **Purpose:**
 – Examine the evidence pertaining to the measurement properties (psychometrics) of the candidate PROM instruments

• **Scope:**
 – Review Articles on Psychometric properties
 – General Population Context

• **Comparative analysis:**
 – Use of COSMIN: Consensus-based Standards for the selection of health measurement instruments (www.cosmin.nl)
 – Comparison of PROM characteristics relevant to decision making

• **Examples of use in a primary and community care contexts**
Domain coverage of selected instruments*

*Refers to the representation of domains in the pool of items. Note some instrument do not prove summary scores for individual domains.
Other instrument features

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AQoL</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>EQ-5D</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SF-36</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HUI3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NHP</td>
<td>No</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>QWB</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>WHOQoL-BREF</td>
<td>No</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PROMIS/GHS</td>
<td>No(^1)</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

1. Equations for converting to EQ-5D scores have been published
Summary of Evidence about Psychometric Characteristics

<table>
<thead>
<tr>
<th></th>
<th>AQoL</th>
<th>EQ-5D</th>
<th>SF-36</th>
<th>HUI</th>
<th>NHP</th>
<th>QWB</th>
<th>WHOQoL</th>
<th>PROMIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal consistency</td>
<td>1</td>
<td>n/a</td>
<td>3</td>
<td>?</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliability</td>
<td>?</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Content validity</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Criterion validity</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Responsiveness</td>
<td>1</td>
<td>-2</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

= negative evidence
= positive evidence
= conflicting evidence
? = Unknown/Not Reported
Key Strengths and Weaknesses

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQoL</td>
<td>Discriminates between groups with clinical variations in health.</td>
<td>Smaller evidence base.</td>
</tr>
<tr>
<td>EQ-5D</td>
<td>Discriminates between groups with clinical variations in health.</td>
<td>Not as comprehensive. Not sensitive to small changes, limited responsiveness in healthy populations.</td>
</tr>
<tr>
<td>SF-36</td>
<td>Top instrument in most psychometric categories. Widely used, multiple cultural contexts, and many versions available.</td>
<td></td>
</tr>
<tr>
<td>HUI</td>
<td>Can distinguish between groups with clinical variations in health, and widespread use in a variety of cultural contexts.</td>
<td>Lacking in mental health. Less reliability. Less responsive in populations of fairly good health.</td>
</tr>
<tr>
<td>NHP</td>
<td>More responsive than SF-36 in populations with poor health. Widespread use in a variety of cultures.</td>
<td>Not ideal for use in general population, or outside of populations with major health issues.</td>
</tr>
<tr>
<td>QWB</td>
<td>Good for capturing change in primarily healthy populations.</td>
<td>Lacking on mental health, may overweight minor conditions.</td>
</tr>
<tr>
<td>PROMIS GHS</td>
<td>Good internal consistency, responsiveness and correlation with other instruments.</td>
<td>Smaller evidence base.</td>
</tr>
</tbody>
</table>
Preferred PROMs for BC Integrated Primary and Continuing Care

Short Form Health Survey instruments

PROMIS Global Health Scale

EQ-5D

Your Health and Well-Being

This survey asks for your views about your health. This information will help keep track of how you feel and how well you are able to do your usual activities. Thank you for completing this survey!

For each of the following questions, please mark an ☐ in the box that best describes your answer.

1. In general, would you say your health is:
 - Excellent
 - Very good
 - Good
 - Fair
 - Poor

2. Compared to one year ago, how would you rate your health in general now:
 - Much better now than one year ago
 - Somewhat better now than one year ago
 - About the same as one year ago
 - Somewhat worse now than one year ago
 - Much worse now than one year ago

EQ-5D: By placing a check-mark in one box in each group below, please indicate which statements best describe your own state of health today.

- Mobility
 - I have no problems in walking about
 - I have some problems in walking about
 - I am confined to bed

- Self-Care
 - I have no problems with self-care
 - I have some problems with self-care
 - I am unable to wash or dress myself

- Usual Activities (e.g., work, study, housework, family or leisure activities)
 - I have no problems with performing my usual activities
 - I have some problems with performing my usual activities
 - I am unable to perform my usual activities

- Pain/Discomfort
 - I have no pain or discomfort
 - I have moderate pain or discomfort
 - I have severe pain or discomfort

- Anxiety/Depression
 - I am not anxious or depressed
 - I am moderately anxious or depressed
 - I am severely anxious or depressed
Settings for PROM data collection

Health research

Program evaluation

Quality improvement

Routine care delivery

Policy decision making

Individual patient management

Program management

Contexts for use of PROMs data
Richard (Rick) Sawatzky PhD

Canada Research Chair in Patient-Reported Outcomes

Associate Professor | School of Nursing
Trinity Western University | t: 604.513.2121 (3274)
Langley, BC, V2Y 1Y1, Canada
twu.ca/nursing | www.ricksawatzky.com

Research Scientist | Centre for Health Evaluation and Outcome Sciences
St. Paul’s Hospital, Vancouver, BC
http://www.cheos.ubc.ca/