
COMPLETING THE INCOMPLETE
Estimating Functions, Likelihood, Imputation, and Bayes

Don McLeish and Cyntha Struthers

University of Waterloo

Dec 5, 2015



Methods for missing data: A more general

approach

We have discussed some common methods for dealing with
missing data and their drawbacks.

Mean imputation

Listwise deletion (LD) or complete-case analysis

Pairwise deletion (PD) or available-case analysis

Regression imputation

Stochastic regression imputation

Inverse probability weighting (IPW)

Imputation (hot deck imputation, predictive mean
matching, multiple imputation (RMI))

We now discuss a general and more intuitive approach to
dealing with missing data.



The Mother1 of all2 estimators....

IS AN ESTIMATING EQUATION ψ(θ,Y ) = 0 where Y is the
data. (unless you are Bayes!)

1or father
2(almost)



Estimating equations

The estimate of θ is found by solving the estimating
equation ψ(θ,Y ) = 0.

ψ(θ,Y ) is an unbiased estimating function if
Eθ[ψ(θ,Y )] = E [ψ(θ,Y )|θ] = 0 for all θ.

Why is this good?

Example: If E (Yi ) = θ then ψ(θ,Y ) =
n

∑
i=1

(Yi − θ) is an

unbiased estimating function for the mean.

The score function S(θ,Y ) = ∂
∂θ ln [fθ(y)] always

provides an unbiased estimating function (some authors
denote S by U).



Estimating equations

If ψ(θ,Y ) is an unbiased estimating function such that

Eθ[ψ(θ,Y )] = E [ψ(θ,Y )|θ] = 0 for all θ

does this imply that the estimators obtained by solving
ψ(θ,Y ) = 0 for θ are unbiased?

The asymptotic unbiasedness of the estimator is inherited
from this property.



Estimating equations and the maximum likelihood

(ML) estimator

To find the maximum likelihood (ML) estimator we
maximize the likelihood function

L(θ) = fθ(y1)× fθ(y2)× · · · × fθ(yn) =
n

∏
i=1

fθ(yi )

The ML estimator is usually obtained by solving
n

∑
i=1

S1(θ;Yi ) = 0 where S1(θ; y) = ∂
∂θ ln [fθ(y)].

Since Eθ

[
n

∑
i=1

S1(θ;Yi )

]
= 0,

n

∑
i=1

S1(θ;Yi ) is an unbiased

estimating function.



Estimating equations

Note that the function
n

∑
i=1

S1(θ;Yi ) is a function of the

observations Y1,Y2, . . . ,Yn and the parameter θ.

Most sensible estimators, like the ML estimator, can be
described easily through an estimating function.

Example:

If Varθ(Yi ) = θ for independent identically distributed Yi ,
then we can use the estimating function

ψ(θ,Y ) =
n

∑
i=1

(Yi − Ȳ )2 − (n− 1)θ

to estimate the parameter θ, without any other
knowledge of the distribution, its density, mean, etc.



Estimating equations and their asymptotic

behaviour

Theorem

Suppose we estimate the parameter θ using θ̂ the solution to
the estimating equation ψ(θ,Y ) = 0. Suppose also that

ψ(θ,Y ) =
n

∑
i=1

ψ1(θ,Yi ) where Y1,Y2, . . . ,Yn are n

independent observations and Eθ [ψ1(θ,Yi )] = 0. Then under
regularity conditions, θ̂ has an asymptotic Normal distribution
with mean θ and variance

Varθ [ψ (θ,Y )]{
Eθ

[
∂
∂θ ψ (θ,Y )

]}2
=

1

n

Var [ψ1 (θ,Yi )]{
Eθ

[
∂
∂θ ψ1 (θ,Yi )

]}2



Godambe information

Definition

By analogy with the relationship between the asymptotic
variance of the ML estimator and the Fisher information, we
call the reciprocal of the asymptotic variance

J (ψ, θ) =

{
Eθ

[
∂
∂θ ψ (θ,Y )

]}2

Varθ [ψ (θ,Y )]

the Godambe information of the estimating function.

Multivariate case: J(ψ, θ)

=

[
Eθ

{
∂

∂θ
ψ(θ,Y )

}]
{Varθ [ψ(θ,Y )]}−1

{
Eθ

[
∂

∂θ
ψ(θ,Y )

]}T



Godambe information

Godambe (1960) proved that, among all unbiased estimating
functions satisfying the usual regularity conditions, the
(essentially unique3) estimating function which maximizes

J (ψ, θ) =

{
Eθ

[
∂
∂θ ψ (θ,Y )

]}2

Varθ [ψ (θ,Y )]

is the score function S(θ;Y ).

For ψ (θ,Y ) = S(θ;Y ), J(ψ, θ) = Fisher information

= Eθ

[
− ∂

∂θS(θ,Y )
]
= Varθ [S(θ,Y )]

3up to multiplication by a non-random c(θ)



Missing data paradigm

Algorithm for solving a missing data problem:

1 Write down the estimating function ψ(θ,Y ) you would
use if you had Y = ALL the data (complete).

For example, for E (Yi ) = θ, ψ(θ,Y ) =
n

∑
i=1

(Yi − θ) = 0.

2 Condition this estimating function (or project it) on Yobs ,
the data you did observe, and solve
Eθ [ψ(θ,Y )|Y obs ] = 0.

This simple algorithm preserves maximum likelihood!

If ψ(θ,Y ) is the complete data score then Eθ [ψ(θ,Y )|Y obs ]
is called the incomplete data score.



The Fundamental Theorem for missing data: The

Power of Projection!

Theorem (Fisher, 1925)

If S(θ;Y ) = ∂
∂θ ln fθ(y) is the score function for ALL the data,

and the data we actually observe is Yobs = T (Y ), a function
of Y , (e.g. coarsened, censored, or rounded data, data MAR,
etc.) then the score function for Yobs is Eθ [S(θ;Y )|Yobs ].



The Fundamental Theorem for missing data: The

Power of Projection

The information in Yobs is (see Rao (1973) for proof)

Var {Eθ[S(θ;Y )|Yobs ]}
= Var [S(θ;Y )]− Eθ {Var [S(θ;Y )|Yobs ]}

= Eθ

[
− ∂2

∂θ2
ln fθ(Y )

]
− Eθ

[
− ∂2

∂θ2
ln fθ(Y |Yobs)

]
= Information in Y − Information in (Y |Yobs)

Var {Eθ[S(θ;Y )|Yobs ]} is smaller than the complete data
information Var [S(θ;Y )].

For the estimating function ψ(θ,Y ), 1
J(ψ,θ)

is an

underestimate of the standard error of the estimator if
data are missing.



Projecting estimating functions

Theorem

Suppose ψ(θ;Y ) is an optimal estimating function for ALL
the data Y . If we observe Yobs = T (Y ), a function of Y ,
then Eθ[ψ(θ;Y )|Yobs ] is the optimal estimating function for
the observation T . (See Small and McLeish )



Example: Normal mean model with data MCAR

Suppose Y1,Y2, . . . ,Yn are i.i.d. N(θ, 1) random variables and
R1,R2, . . . ,Rn are i.i.d. Bernoulli(p) random variable so the
data are MCAR.

The complete data estimating equation based on ALL the

data (Y ,R) for θ is
n

∑
i=1

(Yi − θ) = 0.

Observed data Yobs : RiYi , i = 1, 2, . . . , n.

The estimating equation for the observed data is

E

[
n

∑
i=1

(Yi − θ)|Yobs

]
=

n

∑
i=1

Ri (Yi − θ) = 0.

Solution: θ̂ =

n
∑
i=1

RiYi

n
∑
i=1

Ri

= average of observed values (i.e.

LD).



Example: Normal mean model with data MAR

Suppose Y1,Y2, . . . ,Yn are i.i.d. N(θ, 1) random
variables.

Suppose Ri = 1 if Yi ≤ 1 and Ri v Bernoulli(p) if
Yi > 1, i = 1, 2, . . . , n so the data are MAR.

Observed data Yobs : RiYi , i = 1, 2, . . . , n.

Estimating equation for observed data is

0 =
n

∑
i=1

Ri (Yi − θ) +
n

∑
i=1

(1− Ri )(Ŷi − θ)

where4 Ŷi = E (Yi |Yi > 1) (Mill’s ratio).

Solution: θ̂ = average of values of observed Yi ’s and
values Ŷi for those not observed.

4ϕ and Φ are N(0,1) p.d.f. and c.d.f. respectively



Example: Normal mean model with data MNAR

Suppose Y1,Y2, . . . ,Yn are i.i.d. N(θ, 1) random
variables.

Suppose Ri |Yi are independent Bernoulli
(

1
1+Y 2

i

)
random

variables, so large values of |Yi | are less likely to be
observed.
(Rarely would we know this much.)

The estimating function
n

∑
i=1

Ri (Yi − θ) = ∑
i∈obs

(Yi − θ)

is biased and the estimator is inconsistent.



Example: Normal mean model with data MNAR

The estimating function based on ALL the data is

ψ(θ;Y ) =
n

∑
i=1

(Yi − θ) +
n

∑
i=1

(
Ri −

1

1 + Y 2
i

)
so

Eθ[ψ(θ;Y )|Yobs ] 6=
n

∑
i=1

Ri (Yi − θ).

Could use the estimating function

∑
i∈obs

[Yi − Eθ (Yi |Ri = 1)].



EM Algorithm: Dempster, Laird and Rubin (1977)

EM algorithm is a general technique for finding ML
estimates for a parametric model when the data are not
fully observed.

Basic idea: Ymis contains information relevant to
estimating θ and θ helps to find likely values of Ymis .

Suggests the following algorithm for estimating θ: “Fill
in” the missing data Ymis based on an initial estimate of
θ (e.g. estimate based on complete-cases). Then

1 Update the estimate of θ using Yobs and the filled-in
Ymis .

2 “Fill in” the missing data Ymis based on the updated
estimate of θ (how?).

Iterate steps 1-2 until convergence.



Question www.socrative.com (calgary) Incomplete

data quiz

The ”EM” algorithm obtains its name from the acronym for

A. ETHEL MERMAN (There’s no business like show
business!)

B. EXPECTATION-MAXIMUM

C. An algorithm for ElectroMagnetic propulsion

D. A cheap Russian vodka

E. A dyslexic narcissist’s “ME” algorithm



Using the Fundamental Theorem to find estimates:

A version of the EM algorithm

1 Assuming there are no missing data choose an estimating
equation for the parameter θ: e.g. ψ(θ;Y ) = 0.

2 Use the complete cases to get a preliminary estimator θ̂1
of θ.

3 Find Eθ̂1
[ψ(θ;Y )|Yobs ].

For example, if ψ(θ;Y ) is linear in Y6 and Y6 is missing,
replace Y6 by Eθ̂1

(Y6|Yobs).

4 Solve the equation Eθ̂1
[ψ(θ;Y )|Yobs ] = 0 to find θ̂2.

5 Repeatedly solve the equation Eθ̂k
[ψ(θ̂k+1;Y )|Yobs ] = 0

for θ̂k+1 as k = 1, 2, . . ..
If θ̂k+1 converges, it converges to a solution of
Eθ[ψ(θ;Y )|Yobs ] = 0.

This kind of two-step algorithm is the basis of many
estimation routines.



Example: Censored exponential with data MAR

Suppose Y1,Y2, . . . ,Yn are i.i.d. Exponential(θ) random
variables.

Suppose for ai < bi (either may be infinite) we observe
Yi if Yi /∈ [ai , bi ] and otherwise we only observe that
Yi ∈ [ai , bi ]. (This setup includes right censoring, left
censoring, interval censoring.)

Let Ri = 1 if the observation Yi is observed exactly (so
Yi /∈ [ai , bi ]), otherwise Ri = 0.

Observed data Yobs : RiYi , i = 1, 2, . . . , n.

Estimating equation if there are no missing data:

ψ(θ;Y ) =
n

∑
i=1

(Yi − θ) = 0



Example: Censored exponential data cont’d

Estimating equation if there are no missing data:

ψ(θ;Y ) =
n

∑
i=1

(Yi − θ) = 0

Let Ŷi (θ) =

{
Eθ(Yi |ai < Yi < bi ) if Ri = 0
Yi if Ri = 1

where Eθ(Yi |a ≤ Yi ≤ b) = θ + ae−a/θ−be−b/θ

e−a/θ−e−b/θ .

Then Eθ[ψ(θ;Y )|Yobs ] =
n

∑
i=1

[
Ŷi (θ)− θ

]
.

Solve
n

∑
i=1

[
Ŷi (θ̂1)− θ

]
= 0 for θ̂2 where θ̂1 = mean of

observed Yi ’s.
The ML estimate is found iteratively using

θ̂k+1 =
1
n

n

∑
i=1

Ŷi (θ̂k).



Using the Fundamental Theorem to find estimates:

To use this algorithm we need Eθ̂[ψ(θ;Y )|Yobs ] which
requires calculating conditional expectations.

If the estimating function for the parameter of interest
(e.g. variance) requires Y 2

i and Yi is missing then we
replace Y 2

i by Eθ

(
Y 2
i |Yobs

)
.

(NOT [Eθ (Yi |Yobs)]
2)

If Eθ[ψ(θ;Y )|Yobs ] is difficult to determine, then a
possible solution is to use stochastic imputation, that is,
we “fill-in” Ymis by randomly generating Ymis from the
conditional distribution of Ymis given Yobs .

Such an algorithm is referred to as a stochastic EM
algorithm.



A simulation-based version EM algorithm:

Stochastic EM

The “correct” imputation of the missing data is from the
true distribution fθ (ymis |yobs), where θ is the true value.

Since θ is unknown, we could impute Ymis using the
current estimate of θ.

Let Y ∗
θ̂k

be the completed data consisting of Yobs and the

values for Ymis imputed using θ̂k , the current estimate of
θ.

Use Y ∗
θ̂k

to obtain updated estimate θ̂k+1.



A simulation-based version EM algorithm:

Stochastic EM



A simulation-based version EM algorithm:

Stochastic EM

The updated estimate θ̂k+1 inherits “noise” from the imputed
Ymis |θ̂k .

How else can we obtain an updated estimate θ̂k+1?
Ideally we want to solve the equation
Eθ[ψ(θ;Y ∗θ )|Yobs ] = 0 for θ.

If we solve ψ(θ̂k+1;Y ∗
θ̂k
) = 0 for θ̂k+1, then each

imputation is random so solution depends on generated
Y ∗

θ̂k
.

We can use averaging to deal with the noise, that is,

generate m imputations Y
∗(1)
θ̂k

,Y
∗(2)
θ̂k

, . . . ,Y
∗(m)

θ̂k
and find

θ̂k+1 by solving

1

m

m

∑
i=1

ψ(θ̂k+1;Y
∗(i)
θ̂k

) = 0.



A simulation-based version EM algorithm:

Stochastic EM

An alternative to averaging is to use an algorithm suggested
by Robbins-Monro (1951) for solving E [M(θ)] = 0 where
M(θ) is a random function:

θ̂n+1 = θ̂n −
c

n
M
(
θ̂n
)

, where c is a constant.

Using this idea, θ̂k+1 is found by solving

θ̂k+1 = θ̂k −
c

n
ψ
(

θ̂k ;Y ∗
θ̂k

)
.

If θ̂k converges, it converges to the solution of
Eθ[ψ(θ;Y )|Yobs ] = 0.

In particular if ψ(θ;Y ) is the score function then θ̂k
converges to the ML estimate of θ.



A simulation-based version EM Algorithm:

Stochastic EM

At convergence, the iterations provide imputations Y ∗θ of the
missing values for the ML estimate of the distribution.

This is the gold standard for imputations.

We still need to use the appropriate (incomplete
data) information matrix for confidence intervals.



What to do when your confidence is lacking...

Let L(θ,Y ) be the likelihood. For MAR, the ML estimate
is the solution to

∂

∂θ
ln fθ(yobs) = Eθ [S(θ;Y )|Yobs ] = 0

where S(θ;Y ) =
∂

∂θ
ln L(θ,Y )

The ML estimator has asymptotic covariance matrix given
by the inverse of the Fisher Information matrix,

J(S , θ) = Varθ

[
∂
∂θ ln fθ(yobs)

]
= Eθ

[
− ∂2

∂θ2
ln fθ(yobs)

]
.

J(S , θ) is often difficult to obtain

Observed information Jo = − ∂2

∂θ2
ln fθ(yobs) is

asymptotically equivalent, easier to obtain and better for
many purposes (Wald tests, CI’s, etc.).



The confidence game

For the regular exponential family (Normal, Poisson, etc.)

with canonical parameter θ, fθ(y) = eθT t(y)−a(θ)h(y).

Score function: S(θ, y) = t(y)− a(θ)

Observed Information: Jo(θ) = a′(θ)

For most missing data ML software, Jo is a by-product of
the EM or SEM algorithm.

Asymptotic variance for original parametrization, say
η = η(θ), is obtainable by the delta method.

For the Normal distribution with monotone missingness,
explicit parameter estimators and Fisher information are
available.



The importance of the MAR assumption

Data which are MNAR require a model for the joint
distribution (Y ,R). Why not always model (Y ,R)?

Since we observe no information about P(Y |R = 0), we
cannot assess the fit of the assumed model for
P(Y = y ,R = 0).

Statisticians prefer models that allow some assessment of
fit.

We do observe information about P(Y |R = 1).

We extrapolate properties of P(Y |R = 0) from those
that are estimable based on our observed information
about P(Y |R = 1).

The MAR assumption allows us to do this.



When can we ignore the distribution of R?

Suppose the pdf of the complete data Y is fθ(y) and the
conditional pdf of R |Y is fγ(r |y) which may depend on a
parameter γ.

The joint likelihood for (Yobs ,R) is

L(θ, γ, yobs , r) =
∫

fθ (yobs , ymis) fγ (r |yobs , ymis) dymis

(*)
If the observations are MAR, then
fγ (r |yobs , ymis) = fγ (r |yobs) and (*) equals

fγ (r |yobs)
∫

fθ (yobs , ymis) dymis = fγ (r |yobs) fθ (yobs) .

Since the right hand side is a function of γ times a
function of θ, maximizing fθ (yobs) is equivalent to
maximizing the joint likelihood of θ and γ over θ.



When can we ignore the distribution of R?

Fact

If the observations are MAR, maximizing fθ (yobs) leads to
consistent, fully efficient estimators.



Example: ML estimates for bivariate normal (BVN)

Y1 = log(head size) completely observed
Y2 = log(brain weight) sometimes missing5

Likelihood under MAR assumption:

L(µ1, µ2, Σ) = ∏ [f (y1, y2|µ, Σ)]R [f (y1|µ1, σ1)]
(1−R)

where f (y1, y2|µ, Σ) is BVN (µ, Σ) density with

µ = (µ1, µ2) and Σ =

[
σ2
1 σ12

σ12 σ2
2

]
and f (y1|µ1, σ1) is

N
(
µ1, σ2

1

)
density.

f (y1, y2|µ, Σ) is the contribution to L if y1, y2 observed.
f (y1|µ1, σ1) is the contribution to L if only y1 observed.

Observed data information: − ∂
∂θ

∂
∂θ ln(L) can be obtained

explicitly (5× 5 matrix).
5(sometimes the head is there but the brain appears to be

missing)



Example: ML estimation for BVN: the brainweight

data

Y1 = log(head size) completely observed
Y2 = log(brain weight) sometimes missing

ML estimates: µ̂1 = ȳ1, σ̂2
1 =

ˆ
var(Y1), µ̂2 = 7.1582

parameter µ1 µ2 σ1 σ2 σ12
estimate 8.193 7.1582 0.1005 0.0938 0.0076

Observed data information

Jo = − ∂

∂θ

∂

∂θ
ln(L) is a 5× 5 matrix

A 95% CI for µ2 is µ̂2 ±1.96
√(

J−1o

)
22



Question-Bayesian approach to missing data

(www.socrative.com (calgary))

Are you familiar with the following terms:

A. prior distribution

B. posterior distribution

C. conjugate prior

D. noninformative prior, improper prior, Jeffreys’ prior

E. Bayes estimator, credible region (Bayesian confidence
interval)



Bayes estimation

In a Bayesian approach to estimation the parameter θ is
assumed to be a realization of some larger random
experiment generated according to the distribution π (θ)
called the prior distribution.

The observations y1, y2, . . . , yn are assumed to be
independent realizations drawn from fθ (y), the
conditional distribution of y given θ.

π(θ) quantifies the information about θ prior to the data
y1, y2, . . . , yn being observed.

π(θ) can be constructed using past data or subjective
beliefs based on expert opinion. The form is sometimes
chosen to convey little prior knowledge about the
distribution of θ or for mathematical convenience.



Posterior distribution

Suppose a value of θ is drawn at random from π(θ) and
then given this value of θ the i.i.d. observations
y1, y2, . . . , yn are drawn from the conditional distribution
fθ (y).
The posterior distribution of the parameter is the
conditional distribution of θ given the data
y = (y1, y2, . . . , yn)

π(θ|y) = cπ(θ)
n

∏
i=1

fθ(yi ) = cπ(θ)L(θ)

where

c =

 ∞∫
−∞

π(θ)L(θ)dθ

−1

and L(θ) = L (θ; y) is the likelihood function.



Choosing a prior: Conjugate priors

If a prior distribution has the property that the posterior
distribution is in the same family of distributions as the prior
then the prior is called a conjugate prior.

Suppose (Y1, . . . ,Yn) is a random sample from the
exponential family fθ(y) = C (θ) exp[q(θ)T (y)]h(y).

Suppose also that θ is assumed to have the prior
distribution with parameters a, b given by

π(θ) = k [C (θ)]a exp[bq(θ)]

where

k =

 ∞∫
−∞

[C (θ)]a exp[bq(θ)]dθ

−1



Choosing a prior: Conjugate priors

The posterior distribution of θ, given the data
y = (y1, y2, . . . , yn) is

π(θ|x) = c [C (θ)]a+n exp

{
q(θ)

[
b+

n

∑
i=1

T (yi )

]}
where

c =
1

∞∫
−∞

[C (θ)]a+n exp

{
q(θ)

[
b+

n

∑
i=1

T (yi )

]}
dθ

Note that the posterior distribution is in the same family
of distributions as fθ(y) and thus π(θ) is a conjugate
prior.
The parameters a and b of the posterior distribution
reflect the choice of parameters in the prior.



Conjugate priors

Conjugate prior distribution for a random sample from each of
the following distributions:

Distribution Parameter(s) Conjugate Prior
Uniform(0, θ) θ Pareto(a, b)
Poisson(θ) θ Gamma

N(θ, σ2)
σ2 known

θ Normal
(
µ, σ2

0

)
N(µ, θ)
µ known

θ Inverse (reciprocal) Gamma

Gam(α, θ)
α known

θ Inverse (reciprocal) Gamma

N(µ, 1
θ ) µ, θ cθb1/2 exp e−

θ
2 [a1+b2(a2−µ)2]

Normal-Gamma



Noninformative prior distributions

The conjugate prior is often motivated by mathematical
convenience.
The prior should accurately represent the preliminary
uncertainty about the plausible values of θ, and this may
not translate easily into a conjugate prior distribution.
Noninformative priors provide standard representation of
ignorance about θ. A noninformative prior is arguably
more objective than a subjectively assessed prior
distribution since the latter may contain personal bias as
well as background knowledge.
The amount of information in the prior is always far less
than the information contained in the data. (Little point in

worrying about a precise specification of the prior

distribution.)



Ignorance is bliss: Noninformative prior dist’ns

If θ only takes values on the interval [0, 1] then choosing
the Uniform(0, 1) distribution as the prior reflects the fact
no value of θ is preferred over another.

If θ takes values on the interval (−∞, ∞) and we assume
the priorπ (θ) = c for θ ∈ (−∞, ∞) then

∞∫
−∞

π(θ)dθ = ∞.

which is not a proper density.

Such prior densities are called improper priors.



Improper prior distributions

Even though the prior is improper, the posterior may be
proper.

For example if π(θ) = 1, and Y is N(θ, 1). Then

π(θ|y) = L(θ) =
1√
2π

e−
1
2 (y−θ)2 , the N(y , 1) density.

Fact

The likelihood function is proportional to the posterior
distribution of the parameter when using a uniform improper
prior on the whole real line.

For a scale parameter (e.g. variance) which takes on positive
values, often assume the logarithm of the parameter is
uniform.



Independent improper priors for the Normal

Let (Y1, . . . ,Yn) be a random sample from a N(µ, σ2)
distribution. Assume that the prior distributions of µ, and
log(σ2) are independent improper uniform distributions.

The marginal posterior distribution of µ given the data
y = (y1, . . . , yn) is such that

√
n(µ− ȳ)/s v t (n− 1) .

The marginal posterior distribution of σ2 given the data y
is such that

1

σ2
v Gamma

(
n− 1

2
,

2

(n− 1)S2

)



Jeffreys’ prior

A problem with noninformative prior distributions is
whether the prior distribution should be uniform for θ or
some function of θ, such as θ2 or log(θ).

It is common to use a uniform prior for τ = h(θ) where
h(θ) is the function of θ whose Fisher information is
constant.

This idea is due to Jeffreys and leads to a prior
distribution which is proportional to the square root of

the determinant of the Fisher Information |J(θ)|1/2.

Such a prior is referred to as a Jeffreys’ prior.



Bayesian inference

Bayesian inference is based on the posterior distribution
π(θ|y) which depends on the data y through the
likelihood function since π(θ|y) ∝ π(θ)L (θ; y).

For example the Bayes estimator for squared error loss is
the mean of the posterior distribution

θ̂B = E (θ|Y) =

∞∫
−∞

θπ(θ|y)dθ

which minimizes

E
[(

θ − θ̂B
)2]

=

∞∫
−∞

 ∞∫
−∞

(
θ − θ̂B

)2
fθ(y)dy

π(θ)dθ



Asymptotic Normality of the posterior distribution

Recall

π(θ|y) ∝ π(θ)
n

∏
i=1

fθ(yi ) = π(θ)L(θ).

Taking the logarithm of the right side and expanding we have

ln π(θ) +
n

∑
i=1

ln fθ (yi ) ≈ ln π(θ)− 1

2
(θ − θ̂)2In(θ̂)

where θ̂ is the ML estimate and In is the observed information.

This means that the posterior distribution is
asymptotically Normal with mean θ̂ and variance[
In(θ̂)

]−1
.

The ML estimator and the Bayes estimator are
asymptotically equivalent, i.e. θ̂B − θ̂ = op(n−1/2).



The Fundamental Theorem for missing data:

Bayesian version

Theorem

If f (θ|Y ) is the posterior distribution function for the
complete data Y and the data we actually observe is
Yobs = T (Y ), a function of Y , (e.g. coarsened, censored, or
rounded data, data MAR, etc.) then the posterior distribution
based Yobs is E [f (θ|Y )|Yobs ].

Similarly if θ̂B is the Bayes estimator based on complete data
then E

(
θ̂B |Yobs

)
is the Bayes estimator based Yobs .



It’s not about U (the score function), it’s all about

MI (multiple imputation)

Recall the steps of multiple imputation:

A random sample is drawn from some distribution to
replace the missing values. (How?)

This is done m times to form m completed datasets.

Each of the m completed datasets are analysed and the
results are combined using Rubin’s Rules.



Rubin’s rules for combining completed datasets

Let Q̂ denote an estimate of a parameter θ and let U be its
estimated variance assuming complete data. For example,
Q̂ could be an estimated regression coefficient and U its
squared standard error.

1 Impute m datasets to obtain estimates Q̂1, . . . , Q̂m with
corresponding variances U1, . . . ,Um.

2 Obtain the estimate Q̄ = 1
m

m

∑
i=1

Q̂i and let Ū = 1
m

m

∑
i=1

Ui .

3 Estimate the variance of Q̄ using T = Ū +
(

1 + 1
m

)
B ,

where B = 1
m−1

m

∑
i=1

(Q̂i − Q̄)2 is the between-imputation

variance.



Making sense of Rubin’s rules for combining

completed datasets

√
T is the overall standard error associated with Q̄ where

T = Ū +
(

1 + 1
m

)
B .

If there were no missing data, then Q̂1, Q̂2, . . . , Q̂m would
be identical, B would be 0 and T = U .

The size of B relative to U is a reflection of how much
information is contained in the missing part of the data
relative to the observed.

r = B
Ū
(1 + 1

m ) = “relative increase in variance due to
missingness”.

λ = B
T (1 +

1
m ) = “proportion of variance due to

missingness”.



Making sense of Rubin’s rules for combining

completed datasets cont’d

Suppose Q = Q(yobs , ymis) is the statistic we would have used
to estimate θ, had the complete data all been available.

We use Q̄ = 1
m

m

∑
i=1

Q̂i (yobs , ẏ
(i)
mis) instead where ẏ

(i)
mis is

imputed.
Then the error is

Q̄ − θ = (Q − θ) + [E (Q |yobs)−Q ] + [Q̄ − E (Q |yobs)]
and Var (Q̄ − θ)

= Var (Q − θ) +Var (E (Q |yobs)−Q) +Var (Q̄ − E (Q |yobs))
≈ Ū +B + 1

mB

since Ū estimates Var (Q) and B , the between-imputation
variance, estimates Var [Q − E (Q |yobs)] and
Var

[
Q̂i − E

(
Q̂i |yobs

)]
.



Confidence intervals based on Rubin’s rules for

combining data analyses

Rubin gives an approximate 95% confidence interval as

Q̄ ± a
√
T

where a is the value such that P (−a ≤ X ≤ a) = 0.95 where
X v t (ν) and

ν = (m− 1)

[
1 +

mU

(m+ 1)B

]2
.



Bayesian approach to imputing the missing data

Sample missing values from the posterior predictive
distribution.

How?

1 Generate θ̃ from its posterior distribution given the
observed data: E [f (θ|Y )|Yobs ].

2 Impute the missing data using fθ̃(ymis |yobs).



Toy example of sampling from the posterior

distribution

Yi are independent N(θ, 1), i = 1, . . . , 20

Yi , i = 1, . . . , 10 observed

Yi , i = 11, . . . , 20 missing.

Assume improper uniform prior distribution for θ.

Posterior distribution for θ given the observed data is

N(ȳobs , 1/10) where ȳobs =
1
10

10

∑
i=1

yi .

Q = 1
20

20

∑
i=1

Yi and U = 1
20 .



Toy example of sampling from the posterior

distribution

Repeat m times.
Draw θ̇ ∼ N(ȳobs , 1/10).
Draw ẏmis = {yi , i = 11, . . . , 20} from N(θ̇, 1) to fill in
missing data.

Obtain Q̂ = Q̂(yobs , ẏmis) =
1
20

20

∑
i=1

yi with U = 1
20 .

Then estimate θ with Q̄ = 1
m

m

∑
i=1

Q̂i and

Var (Q̄) with T = Ū +
(

1 + 1
m

) m

∑
i=1

(
Q̂i − Q̄

)2
where

Ū = 1
20 .



Frequentist viewpoint

From a frequentist viewpoint we have done two things wrong:

1 Instead of imputing from the “correct” distribution
fθ0(ymis |yobs), we simulated from the predictive
distribution, i.e. we generated θ̃ from the posterior
distribution and then imputed from the distribution
fθ̃(ymis |yobs).

2 We are using the “complete data” variances Ui instead of
the observed data formula, but then inflating these with
the “combining” rule to get T .



Frequentist viewpoint

Do two wrongs really make a right???
Rubin shows that under a number of (rather strong)
conditions, the coverage of the interval Q̄ ± a

√
T equals

or exceeds its nominal value.

To this is added substantial positive testimony from Rubin
and colleagues on less tractable parametric problems.



Rubin knows best? When is “proper” imputation

improper?

Suppose Q = Q(yobs , ymis) is the statistic we would have
used to estimate θ, had the complete data all been
available.

We use Q̄ = 1
m

m

∑
i=1

Q̂i (yobs , ẏ
(i)
mis) instead where ẏ

(i)
mis are

imputed.
Q̄ estimates E (Q̂i |yobs).
Q̄ is not the ML estimate (close asymptotically). Rubin’s
confidence intervals are often wider than likelihood
intervals.



“Proper” imputation

Definition

The imputation must be such that (roughly)

1. The imputation is consistent with the complete data

model: i.e. E [Q̂i (yobs , ẏ
(i)
mis)|yobs ] = E [Q(yobs , ymis)|yobs ].

2. Ū estimates the complete-data variance, that is
U = U(yobs , ymis) satisfies Var(Q) ≈ U and
E [U(yobs , ẏmis)|yobs ] = E [U(yobs , ymis)|yobs ].
3. B estimates
Var [Q − E (Q |yobs)] = Var

[
Q̂i − E

(
Q̂i |yobs

)]
.

These conditions are not easy to verify in practice.



Imputation estimation schemes behaving badly

Many have observed (e.g. Nielsen, 2003) that some degree of
consistency and efficiency is required between the estimation
method and the imputation method. The requirements for a
proper imputation are not sufficient to ensure stated coverage
of the confidence interval.

Meng adds the condition of self-efficiency:

Definition

(Meng, 1994): Let Y be a data set, and let Y0 be a subset of
Y created by a selection mechanism. A statistical estimation
procedure θ̂(Y ) for 0 is self-efficient (with respect to the
selection mechanism) if the estimator applied to the complete
data set θ̂(Y ) is better in terms of mean squared error than
when applied to a portion thereof, i.e. θ̂(Y0).



Multiple Imputation: Rules and pitfalls

1 The imputation model should be at least as general as
that of the analyst. Any variable which may effect the
missingness or any variable which might be used in the
complete data model should be included in the
imputation. This is to ensure that the estimating function
is still unbiased. The imputation model should be
consistent with (congenial with) the analyst’s model.

2 Failure to include variables in the imputation model that
are correlated with those in the analyst’s model and
which help to predict missingness may lead to bias.

3 The MAR assumption may not hold.
4 Convergence problems may occur especially when the

model of interest contains non-linear relationships or
interactions are not included in the imputation model.



Question www.socrative.com (calgary)

We wish to impute missing Y values in a dataset. In
modelling the missing indicator R , we should

A. Include only those variables that we know effect whether
or not data are missing.

B. Include only those variables that may be used in a
subsequent analysis.

C. Include all variables that may be used in a subsequent
analysis and all variables that might effect whether or not
data are missing.

D. Introduce an indicator random variable as covariate in our
regression for observations that are missing.

E. Use independent Bernoulli(p) trials.



Example: Bayesian imputation and the Normal

linear model

Suppose the observed data are

y1 X1
...

...
yn Xn

? Xn+1
...

...
? XN


=

[
yobs Xobs

ymis Xmis

]

There are ONLY missing values for the response y .

Xobs (n× q matrix) and Xmis have NO missing values.



Bayesian imputation using the Normal linear model

cont’d

Assume Yi v N
(
Xiβ, σ2

)
, i = 1, . . . ,N so the parameters are

β (q × 1 vector) and σ2.

Assume improper prior distributions for β and ln
(
σ2
)

.

Let β̂ and σ̂2 be the usual linear regression estimates of β
and σ2 based on the n complete cases.

The posterior distribution for β given σ2 is

MVN
(

β̂, σ2Vobs

)
where Vobs =

(
XT
obsXobs

)−1
.

The posterior distribution for σ2 is σ̂2 (n− q) (a
constant) divided by a χ2 (n− q) random variable.



Bayesian imputation using the Normal linear model

cont’d

To impute the missing y ’s:

1 Draw w from a χ2 (n− q) distribution. Then σ̇2 = σ̂2/w
is a draw from the posterior distribution of σ2.

2 Draw z1, a random sample of size q, from the N (0, 1)

distribution. Then β̇ = β̂ + σ̇z1V
1/2
obs is a draw from the

posterior distribution of β.

3 Draw z2, a random sample of size N − n, from the
N (0, 1) distribution. Then ẏ = Xmis β̇ + z2σ̇ are the
imputed y values.

4 Repeat steps 1− 3, m times.



Brainweight data: MICE and imputations (in R)

library(”mice”, lib.loc=”˜/R/win-library/2.15”)
brainweight mis3 <- read.csv(”..../brainweight mis3.csv”)
imp3<-
mice(brainweight mis3,method=”norm”,m=5,maxit=1,seed=1)
fit3<- with(imp3,lm(lweight˜lsize+fem))
round(summary(pool(fit3)),3)

est se t df Pr(>|t|) nmis

(Intercept) 1.577 0.531 2.971 14.979 0.010 NA

lsize 0.679 0.064 10.592 15.034 0 130

fem -0.003 0.013 -0.250 16.219 0.805 0



Brainweight data: Results using LD

> fit4 <- with(brainweight mis3,lm(formula = lweight ˜lsize
+fem))
> summary(fit4)
Call: lm(formula = lweight ˜lsize + fem)
Coefficients:

est se t Pr(>|t|)
(Intercept) 1.27401 0.56785 2.244 0.027
lsize 0.71763 0.06862 10.458 <2e-16
fem 0.00932 0.01383 0.674 0.502

Residual standard error: 0.05815 on 104 degrees of freedom
(130 observations deleted due to missingness)
Multiple R-squared: 0.5716, Adjusted R-squared: 0.5633
F-statistic: 69.37 on 2 and 104 DF, p-value: < 2.2e-16



Brainweight data: MICE versus LD

True est (MICE) se est (LD) se
(Intercept) 1.284 1.577 0.531 1.27401 0.56785
lsize 0.717 0.679 0.064 0.71763 0.06862
fem -0.014 -0.003 0.013 0.00932 0.01383



What if your posterior is hard to find?

If the missing data pattern is complex then the posterior given
the observed data, E [f (θ|Y )|Yobs ], may be difficult to
determine. If the posterior is easy to obtain for completed
data sets, then the following two steps can be used:

1 Impute the missing values.
2 Generate θ from the posterior given the completed data.

When these two steps are repeated, the result is a Markov
Chain. This algorithm is called ”Data Augmentation” or
Gibb’s Sampling. More on this in last session.



The do’s of multiple imputation (van Buuren)

1 Find out the reasons for the missing data; Include factors
that govern the missingness in the imputation model;

2 Include the outcome variable(s) in the imputation model;

3 Impute categorical response data by techniques for
categorical data;

4 Impute by proper imputation methods;

5 Inspect the imputed data; Evaluate whether the imputed
data could have been real data;

6 Describe potential departures from MAR; Specify simple
MNAR models for sensitivity analysis;



The don’t’s of multiple imputation (van Buuren)

Do not:

1 Use multiple imputation if simpler methods are valid;

2 Impute blindly;

3 Put too much faith in the defaults for multiple imputation
software;

4 Create imputations using a model that is more restrictive
than needed;

5 Uncritically accept imputations that are very different
from the observed data;




