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Longitudinal models and regression

Much of the analysis of longitudinal models is carried out
using linear models or generalized linear models.

We begin with methods for dealing with missing
responses in a normal linear model.

Then we look at methods for dealing with missing
covariates in a normal linear model.

Finally we look at methods for dealing with missing data
in a longitudinal study.



Normal linear model: Responses only MAR

Suppose Yi ∼ N(β0 + β1xi + β2vi , σ2), i = 1, . . . , n ind.

The score vector for one observation is

S(yi |xi , vi , β) =
∂

∂β
ln fβ(yi |xi , vi )

=
1

σ2
[yi − (β0 + β1xi + β2vi )]

 1
xi
vi


We want to estimate β = (β0, β1, β2) when some of the
Yi are MAR.

Let Ri = 1 if Yi is observed and Ri = 0 otherwise.



Normal linear model: Responses MAR

For complete data, β is estimated by solving
n

∑
i=1

S(yi |xi , vi , β) = 0.

Assume ALL data are independent (Yi ,Ri , xi , vi ),
i = 1, . . . , n.

Let Yobs = (Riyi , xi , vi ), i = 1, . . . , n be observed data.

Conditioning on Yobs , we obtain the estimating function:

n

∑
i=1

[
RiS(yi |xi , vi , β) + (1− Ri )Eβ{S(Yi |X ,V , β)|Yobs}

]
.

Assume Y is MAR, that is, P(R = 1) = π(X ,V ) where
π is a known function (up to vector of parameters γ).

Because of MAR, the second term in the estimating
function equals zero.



Normal linear model: Responses MAR

The estimating function

n

∑
i=1

RiS(yi |xi , vi , β)

=
1

σ2

n

∑
i=1

Ri [yi − (β0 + β1xi + β2vi )]

 1
xi
vi


gives the usual least squares estimator based on the
observed values only: Ri × (yi , xi , vi ), i = 1, . . . , n.

Conclusion: When the response is MAR, listwise deletion
(complete-case analysis) is fully efficient for regression
parameters relative to ML estimation based on Yobs .



Linear model: Covariates MAR

Suppose (yi , vi ) are observed but some xi are MAR.

Let Ri = 1 if xi is observed and Ri = 0 otherwise. If
observations are MAR, P(R = 1) = π(Y ,V ) where π is
a known function (up to vector of parameters γ).

Assume ALL the data are independent observations
(Yi ,Ri , xi , vi ), i = 1, . . . , n.

For a normal linear model the ML estimating function is

n

∑
i=1

{
RiS(yi |xi , vi , β) + (1− Ri )Eβ [S(Y |X ,V , β)|yi , vi ]

}
.

Second term in the estimating function uses information
about x obtained from (y , v). LD is NOT consistent, or
efficient relative to ML estimation based on the observed
data.



Covariates missing: Parametric approach

Problem: To evaluate Eβ[S(Y |X ,V , β)|yi , vi ] we need
either fβ(y , x |v) or f (x |v) which are unknown.

How do we estimate fβ(y , x |v) or f (x |v)?

Option 1 - Parametric Model:

We have already assumed a parametric (normal) model
for fβ(y |x , v).

If we also model f (x |v) parametrically then we can
obtain ML estimates based on the observed data using a
method such as the EM algorithm.



Covariates missing: Semiparametric approach

Option 2 - Semiparametric Model:
Estimate f (x |v) nonparametrically.

For complete data, E [S(yi |X , vi , β)fβ(yi |X , vi )|V = vi ]
could be estimated using the average of the observed xi ’s
for a given V = vi .

This would require one or more complete observations for
each observed value of v .

Suppose for V = vi we have complete observations
(yj , xj ,vi ) , j = 1, . . . , Ji .



Covariates missing: Semiparametric approach

Estimate Eβ [S(Y |X ,V , β)|yi , vi ] using the weighted
average

Ji
∑
j=1

S(yi |xj , vi , β)wij

Ji
∑
j=1

wij

where wij = fβ(yi |xj , vi )I (vj = vi ).

This approach is equivalent to estimating f (x |v) (and
conditional expectations given V ) by averaging over the
observed x ’s in the same stratum, where the stratum is
defined by the common value of v .
Possible problem: There may be too few observations
in the stratum for a given value of v resulting in a poor
estimate.



Semiparametric approach: Chatterjee, Chen and

Breslow

Chatterjee, Chen and Breslow (2003) used inverse
probability weighting to determine the weights wij .

The probability a given point (yj , xj , vj ) is observed is
P(Rj = 1|yj , vj ) = π(yj , vj ).

Let E (Rj |xj , vj , β) = η(xj , vj ; β).

The Chatterjee, Chen and Breslow (CCB) weights are
given by

wij =
Rj

η(xj , vj ; β)
fβ(yi |xj , vi )I (vj = vi ).



Semiparametric approach: The profile estimator

Another approach to determining the weights is to
estimate f (x |v) using the non-parametric ML estimate.

The support of f (x |v) for a given v is NOT just the
observed x for that value of v .

There are pairs (x , v) for which no data are observed and
yet including these points in the support of f (x |v)
increases the likelihood function for f (x |v). (See:
McLeish and Struthers (2006)).



Example

In this example only small x are observed for this value of v .
The CCB weights perform poorly in this case. Similarly, any
hot-deck. ML estimation performs better since, for this v
value, it also includes large x in the support set for f (x |v).



Doubly robust estimating function

Several authors1 have proposed a slightly different estimating
function: ψ(β) =

n

∑
i=1
{ Ri

η(xj , vj ; β)
S(yi |xi , vi , β)

+ [1− Ri

η(xj , vj ; β)
]Eβ [S(Y |X ,V , β)|yi , vi ] }

=
n

∑
i=1

Ri

η(xj , vj ; β)

{
S(yi |xi , vi , β)− Eβ [S(Y |X ,V , β)|yi , vi ]

}
+

n

∑
i=1

Eβ [S(Y |X ,V , β)|yi , vi ]

where P (Rj = 1|xj , vj ) = η(xj , vj ; β).
1e.g. Robbins, Rotnisky



Doubly robust estimating function

If η(xj , vj ; β) is correctly specified, then
ψ(β) =
n

∑
i=1

Ri
η(xj ,vj ;β)

{
S(yi |xi , vi , β)− Eβ [S(Y |X ,V , β)|yi , vi ]

}
+

n

∑
i=1

Eβ [S(Y |X ,V , β)|yi , vi ] has the same expected

value as
n

∑
i=1

S(yi |xi , vi , β).

Therefore ψ(β) is unbiased and the estimator obtained by
solving ψ(β) = 0 is consistent.



Doubly robust estimating function

If η(xj , vj ; β) is incorrectly specified but f (x |v) is correctly
specified then

{
S(yi |xi , vi , β)− Eβ [S(Y |X ,V , β)|yi , vi ]

}
and

Eβ [S(Y |X ,V , β)|yi , vi ] both unbiased estimating functions.

So is ψ(β) =
n

∑
i=1

Ri
η(xj ,vj ;β)

{
S(yi |xi , vi , β)− Eβ [S(Y |X ,V , β)|yi , vi ]

}
+

n

∑
i=1

Eβ [S(Y |X ,V , β)|yi , vi ] . The estimators are

consistent.

Only ONE of η and f (x |v) needs to be correctly specified
for consistency. (called double-robustness2 property). If
both are correct, full semiparametric efficiency obtained.

2Han and Wang (2014) use multiple robustness. Given finite sets of
models for π and f (x |v), if any one is correct consistency is obtained.



Regression with missing covariates: Comparison of

the MSE and bias of various estimators

Y , v always observed. Joint model for (y , x , v) is MVN.3

3v grouped into 6 categories, P(x observed) ≈ 0.15, nobs ≈ 150.



National Research Council Special Report on

Missing Data in Clinical Trials

Recommendation 13 of the N.R.C. Special Report:
Weighted generalized estimating equations should be more
widely used in settings when missing at random can be well
justified and a stable weight model can be determined, as a
possibly useful alternative to parametric modeling.



Longitudinal data

In longitudinal models, individuals are measured
repeatedly over time.

For example, in a study on a treatment for high blood
pressure a patient’s blood pressure is measured
repeatedly over time since the treatment effect may vary
over time.

Why are longitudinal studies more difficult to analyze?

Models for longitudinal data must taken in to account
the correlation between measurements over time for a
given individual. (Involves a large number of parameters
unless simplifying assumptions are made about the
correlation structure.).
Dropout may occur or individuals may be censored (e.g.
removed from treatment due to adverse side effects).



Longitudinal data: Naive single imputation

A simple but naive solution to the problem of missing data is
to replace a missing observation with Last Observation Carried
Forward (LOCF) or Baseline Observation Carried Forward
(BOCF).

Neither reflect MAR assumptions.

Both may lead to bias4. The bias is not necessarily
conservative.

4Mohlenbergs and Kenward (2007,2009)



Longitudinal data: Naive single imputation

Panel on Handling Missing Data in Clinical Trials
recommends against LOCF and BOCF use without
justifying assumptions.

Conservative approach:

Use best possible outcome for missing outcome in the
control group.
Use worst possible outcome for missing outcome in the
treatment group.

This approach is often used in a sensitivity analysis to
determine if the imputation method affects conclusions.



Longitudinal data motivating example: Multicenter

AIDS Cohort Study (MACS)

Diggle et al. (2002) analyzed a subset of the 2007 release
of the Multicenter AIDS Cohort Study (MACS)

Public data set available from
http://statepi.jhsph.edu/macs/macs.html

The data cover the years 1984 - 2002.

Participants were followed up every six months (maximum
number visits = 37).

Information on 5622 gay and bisexual men.



Motivating example: Multicenter AIDS Cohort

Study (MACS)

The public data set includes participants who
seroconverted from HIV- to HIV+ during the study.

Data set also includes information on CD4 count at each
visit, date of last negative visit, and date of first positive
visit. These data are sometimes missing.

There were 595 seroconverters, of whom 29 had missing
seroconversion intervals, and 126 had intervals of
seroconversion greater than 6 months.

The data consist of 11743 visits for the 595
seroconverters.

Diggle et al. analyzed the data for participants for whom
the seroconversion window was 6 months or less.



CD4 count versus time since conversion for

seroconverters with observed seroconversion

window



The data

Response:

CD4 count

Covariates:

time of seroconversion from HIV- to HIV+
cigarette smoking (no, ≤ 1

2 packs, > 1
2 packs/day)

recreational drug use (yes/no)
depressive symptoms (scale [−7, 53])
number of sexual partners (0, 1,> 1)
use of drugs to fight AIDS (yes/no).



Missingness in the data



Missingness in the data

If we exclude any visit for which there is a missing CD4
count or covariate we have 9997/11743 or 85% of the
data.

If we also exclude visits corresponding to seroconverters
whose interval of seroconversion is greater than 6 months
then we have 8005/11743 or 68% of the data.

In this assessment of missingness we have not considered
visits which were completely missed. (For example some
participants had missing visits for several years in the
middle of the study and then started attending visits
again, often after seroconverting.)



Simple linear model for CD4 counts

Consider the simple model

Yij = µ(tij ) + βT
3 xi (tij ) + ε ij

where

Yij =
√
CD4 for individual i measured at time tij , j = 1, ..., ni

tij = time since seroconversion for subject i at visit j

xi (tij ) = values of covariates for subject i at visit j

ε ij ∼ N(0, σ2) random errors

µ(t) =

{
β0 + β1t + β2t

2, t > 0
β0 t ≤ 0

and β0, β1, β2, βT
3 are regression coefficients to be estimated.



Simple linear model for CD4 counts

If the Yij are independent this is just a simple linear model and
the least squares estimate of β =

(
β0, β1, β2, βT

3

)
is found by

solving the estimating equation

n

∑
i=1

XT
i (Yi −Xiβ) = 0

where

Xi =


1 t+i1 t+2

i1 [xi (ti1)]
T

1 t+i2 t+2
i2 [xi (ti2)]

T

:
1 t+ini t+2

ini
[xi (tini )]

T

 and Yi =


Yi1

Yi2

:
Yini


where t+ij = tij if tij > 0, and 0 otherwise.



A more realistic model

Observations on the same individual at adjacent times
tij , ti(j+1), if close, should be positively correlated.

There should be larger correlation within individuals than
between them (individual effect)

Cov(Yij ,Yik) > Cov(Yij ,Ymk), if m 6= i

The estimate of β is obtained by solving

n

∑
i=1

XT
i [Var (Yi )]

−1 (Yi −Xiβ) = 0.

The estimates are the ML estimates for a MVN model if
Var (Yi ) is correctly specified.

Consistent estimators of β are obtained even if Var (Yi )
is not correctly specified.



Semiparametric approach

In a semiparametric approach to the estimation of β it is
assumed that E (Yi ) = µi (β) = g−1

(
xTi β

)
or

xTi β = g(µi (β)) where g is called a link function.
Possible choices for g are the identity function, the log
function, the logit function, etc.
The estimate of β is then determined by solving the
equation

n

∑
i=1

(
∂µi

∂β

)T

[Var (Yi )]
−1 [Yi − µi (β)] = 0

which is called a generalized estimating equation (GEE)
or quasi-score estimating equation.
The weighted least squares equation is a special case of a
quasi-score estimating equation.



Quasi-Score function with missing response

Let Rij = 1 if Yij observed and Rij = 0 otherwise.
Suppose also that P(Rij = 1) = pij > 0.

Let Di = diag(Rij/pij ).

An unbiased estimating equation obtained from the
quasi-score function is the inverse probability weighted
(IPW) estimating equation given by

n

∑
i=1

(
∂µi

∂β

)T

[Var (Yi )]
−1Di [Yi − µi (β)] = 0



Semiparametric approach

In the quasi-score estimating equation

n

∑
i=1

(
∂µi

∂β

)T

[Var (Yi )]
−1 [Yi − µi (β)] = 0

the term Var (Yi ) may be replaced by a “working”
correlation matrix which does not depend on the
regression parameters β but may depend on correlation
parameters α.

If Var (Yi ) is replaced by a consistent estimator then
there is no loss of efficiency in the estimation of β.

If the working correlation matrix is not correctly specified
the estimator of β is still consistent.



Example of working correlation matrices

Independence (components uncorrelated) 1 0 0.
0 1 0
0 0 1


Exchangeable (compound symmetry)

 1 ρ ρ
ρ 1 ρ
ρ ρ 1


AutoRegressive Order 1 (AR 1)

 1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1


General (unstructured)

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1





Quasi-Likelihood: Justification of the quasi-score

Among linear combinations of the functions Yi − µi (β), (that
is, all estimating functions linear in Yi ) the quasi-score is the
“best”, in the sense of having the smallest asymptotic variance
(maximum Godambe information) among all such functions.
This is called semi-parametric efficiency.
This is “best in show”....but how good is the competition?



Modelling Var(Y): Are all men created equal?

Nearly every longitudinal model needs to accommodate an
individual effect. For example, some individuals have higher
CD4 counts on average than others.

A “random effect” model accommodates individual effects
using a “hidden” factor Ui that depends on the individual.

Assume Yi given Ui is MVN(µi (β),Vi ) where Ui has
some distribution. Often Ui ∼ N(0, σ2

re) is assumed.

Assume also that Yi = Ui1+µi (β) + ε i where 1 is a
vector of 1’s. Then

Var (Yi ) = Var(Ui )11T + Var(ε i ).

A random effect (intercept) adds a constant
Var(Ui ) = σ2

re to every element of the covariance matrix
Var(Yi ) but does not affect the covariances
Cov(Yij ,Ymk) where m 6= i .



Modelling Var(Y)

If we assume Yi given Ui is MVN(µi (β),Vi ) then the
simplest structure for Vi is a diagonal matrix σ2

meI where
I is the identity matrix.

This structure assumes independence of the values Yij ,
j = 1, 2, . . . given Ui and models measurement error.



Modelling Var(Y)

It is also common to assume exponential decay over time
of the correlation, that is Cov (Yij ,Yik) = e−λ|tij−tik |.

For example, for 4 equally spaced observation times, this
is equivalent to assuming Vi has the form

V(r) =


1 r r2 r3

r 1 r r2

r2 r 1 r
r3 r2 r 1


where |r | < 1.



Modelling Var(Y)

If we combine

measurement error (me)
+ serial correlation
+ random effect (re)

then the assumed form of Var (Yi ) is

σ2
meI + V(r) + σ2

re11T

where I is the identity matrix and 1 is a vector of 1’s.



Back to CD4 count’s and approach of Diggle et al.

Yij = µ(tij ) + βT
3 xi (tij ) + ε ij where Yij =

√
CD4 for

individual i measured at time tij , j = 1, ..., ni

tij = time since seroconversion for subject i at visit j

xi (tij ) = values of covariates for subject i at visit j

µ(t) =

{
β0 + β1t + β2t

2, t > 0
β0 t ≤ 0

Var (Yi ) is assumed to be of the form:
measurement error + serial correlation + random effects.

Analysis is based only on complete cases, tij assumed to
be the time since the midpoint of the seroconversion
interval.



Diggle et al. model



Deficiencies with the above model

There is no attempt to deal with any of the missing data.

The time of seroconversion is “guesstimated” by the
midpoint of the interval between last HIV- visit and first
HIV+ visit.

CD4 count, like temperature or blood pressure, should be
modeled with a process that has

a continuous-time extension
a stationary limit as t → ∞ (quadratic model increases).



The data

Include information on response: CD4 counts (11102 visits),
on covariates: smoking, recreational drug use, AIDS drugs and
number of sexual partners (11644 visits and 3332 columns on
1948 variables), on depressive scale (11157 visits), on year of
AIDS diagnosis and year of death. 212 seroconverters died of
AIDS.



Are the data really missing?

It is easy to identify a completely missed visit. In other
cases it is not so easy.

Number of packs smoked per day is missing for
7970/11644 (68.4%) visits.

Visits 1-7: “Do you smoke cigarettes now?”
Visits 8-37: “Have you ever smoked?”
Actually need to look at the questionnaires (available on
the MACS website) and how they changed from visit to
visit.
“No. of packs smoked/day” actually missing for only 15
visits.



Data cleaning....it’s a dirty job but somebody ...

After all the data were cleaned up it consisted of 11743
visits for the 595 seroconverters.
“Complete Cases”

If we exclude any visit for which there is a missing CD4
count or covariate or the interval of seroconversion is
greater than 6 months then we observe 68% of the data.



Our objectives

Fit natural continuous-time (diffusion) model to data in
which the covariates affect the parameters of the
diffusion. (See Struthers and McLeish (2011).)

Investigate the effect of a more conscientious treatment
of missing data with respect to following objectives (see
Diggle et al.).

1 Estimate the average time of CD4 cell depletion.
2 Estimate course for individuals with measurement error.
3 Identify factors which predict CD4 cell changes.
4 Characterize relationship between CD4 and progression

to death due to AIDS.



A model for continuous time longitudinal data:

Gaussian Ornstein-Uhlenbeck process with

measurement error

dYt = κ [µ(t)− Yt ] + σdWt

Yt = (True CD4)0.4. µ(t) = real underlying process value at
time t which depends on the covariates.

Yt tends in the direction of an unobservable “target”, the
current value of µ(t) which varies with covariates.



A model for continuous time longitudinal data:

Gaussian Ornstein-Uhlenbeck process with

measurement error

dYt = κ [µ(t)− Yt ] + σdWt

κ determines how fast process moves towards µ(t).

σ controls how much random movement.

We observe Yt+ measurement error at certain times.

One objective: construct a model for µ(t) and determine
covariate effects.



A typical path: Plot of path for participant 4070



Question: www.socrative.com (calgary)

Problem

The missing CD4 counts (response) corresponding to missing
visits can likely be assumed to be

A. MCAR

B. MAR

C. MNAR



Question: www.socrative.com (calgary)

Problem

The missing values for the “number of packs smoked per day”
covariate can be assumed to be

A. MCAR

B. MAR

C. MNAR



Prior distributions and generating from complete

data posterior

1 For regression parameters β and missing CD4 counts we
used improper uniform priors so the posteriors are MVN.

2 For time varying covariate values we used a discrete state
Markov chain with estimated infinitesimal generator as
prior.

3 For κ and variance parameters, we used a uniform prior
on suitable interval.

The posteriors for 2 and 3 are generated using acceptance-
rejection, i.e. generate candidate parameter and accept with
probability that depends on the prior.



Results: Our fitted model for the mean



Results: Fitted expected CD4 count and credible

interval for participant 4870



Results: Posterior distributions for regression

coefficients



Monotone, and the living is easy....

Suppose Y is a d−dimensional vector corresponding to
responses from an individual at consecutive times
t1, . . . , td .

If an individual “drops out” after time tk , k < d , then
the responses Yk+1, . . . ,Yd are missing.

This is an example of a monotone missing pattern:

indices for Y1 ⊂ missing indices for Y2 · · · ⊂ missing
indices for Yd .

For MVN and a monotone missing pattern, both ML
estimates and multiple imputations are straightforward.



Likelihood for MVN and monotone missing pattern

Suppose we write the joint likelihood as L(θ1, θ2, . . . , θd )

= fθ1(y1)fθ2(y2|y1)fθ3(y3|y1, y2) · · · fθd (yd |yd−1, yd−2, . . . , y1)

where θk are the parameters of fθk (yk |y1, y2, . . . , yk−1).
If Y is MVN then parameter θ1 of fθ1(y1) estimated from
the marginal distribution of the observed y1 values.
θ2 is estimated by fitting a linear regression of y2 on y1
using the completely observed values of (y1, y2).
For k = 1, 2, . . . , d , θk is estimated by fitting a linear
regression of yk on y1, y2, . . . , yk−1 using the completely
observed values of (y1, y2, . . . , yk−1, yk).

These conditional distributions provide the ML estimates of
parameters in the joint MVN model.
Confidence intervals are constructed using the estimated
variances provided by the regressions and the delta method.



Monotone missing and imputations

For a monotone missing pattern the posterior distribution
π(θ1, θ2, . . . , θd |y1, y2, . . . , yk) can also be factored:

cfθ1(y1)π(θ1)fθ2(y2|y1)π(θ2)· · ·fθd (yd |yd−1, yd−2, . . . , y1)π(θd )

= π(θ1|y1)π(θ2|y1, y2) · · ·π(θd |y1, y2, . . . , yd )

This factorization means the missing y ′s can be imputed as
follows:

Generate θ1 from the posterior π(θ1|yobs1 ).

Draw ŷmis
1 from P(ymis

1 |θ1, yobs1 ). Let ŷ1 = (yobs1 , ŷmis
1 ).

Generate θ2 from the posterior distribution
π(θ2|ŷ1, yobs2 ).

Draw ŷmis
2 from P(ymis

2 |θ2, ŷ1, yobs2 ). Let
ŷ2 = (yobs2 , ŷmis

2 )...etc.



Question: www.socrative.com (calgary)

Problem

Individuals with a lower value of CD4 are at higher risk of
dropping out of a population. A treatment is provided to
maintain or increase CD4 in the population. The population
average value of CD4 will

A. increase over time whether or not the treatment works.

B. increase over time only if the treatment works.

C. remain about the same over time.



Dealing with the apparent increase in CD4 counts

Why does the average CD4 count increase towards the
end? Are people getting healthier?

Two ways to deal with this:

survivorship bias (next session)
use event time data (e.g. death from AIDS) and use
joint likelihood. (See Struthers and McLeish (2011).)
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