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Survivorship in Brownian Motion Model

Mutual Fund returns, CD4 counts, blood pressure...resemble
Brownian motion.



Survivorship for a Brownian Motion

Suppose a random variable Zt results from a continuous
time process, 0 < t ≤ T .

If Zt ever drops below a barrier then the process
disappears from view (e.g. dropout occurs).

We are interested in the distribution of ZT for the
”survivors”.

survivemovie.mp4



Survivorship Under a Brownian Motion:

In a longitudinal study dropouts may occur either
independently of the process Zt or because Zt falls below
a threshold level b.

The survivors’ data ZT obtains from the conditional
distribution f (zT |mint≤TZt > b).

(When R = 0 we do not know whether min(Zt) > b or
≤ b.



Survivorship/Post-Hoc Bias

Bias in Meta-analysis: Publication bias leads to test
statistics ZT that tend to be skewed towards significance1.
Performance measures: Publication and survivorship lead to
published portfolio investment returns or performance
measures that are positively biased.
Group-Sequential Trials: We may sequentially monitor a
trial and discontinue treatment (or end the trial) at time
t < T if the efficient score, say Zt , (e.g. 2) falls crosses a
given threshold. In this case we observe the value of R = 0 if
terminated. We observe values of R and ZT

∼ f (zT |mint≤TZt > b).

1Egger, et al. (1997)
2Whitehead (1997)



Models for survivorship Bias

Suppose a random variable Z is generated from a probability
density function f (z). Values of Z below a barrier b are
deleted. Those with values close to a barrier survive with
probability G (z − b) where G is a c.d.f.

We may not observe the random variable R . The
probability density function conditional on survival
f (z |R = 1) is proportional to f (z)P(R = 1|z)or
f (z)G (z − b) for z > b.

G (z − b) ”thins” the observations by selecting a fraction
as survivors. This is an example of a selection model.

Tractable choices for G include exponential, Normal
c.d.f.3, etc.

3leading to the skew normal distribution



A Distribution for Survivors

Consider “exponential thinning”4. G (z) is an exponential

c.d.f. G (z) = 1− e−λ(z−b), for z > b.

If f (z) is Normal we obtain 1
kσ ϕ

(
z−µ

σ

) (
1− e−λ(z−b)

)
,

for z > b.

Replacing Z by Z − b obtain the family

hλ(z ; µ, σ) =
1

kσ
ϕ

(
z − µ

σ

)(
1− e−λz

)
, for z > 0

with µ ∈ <, σ > 0, λ > 0, k = Φ(µ
σ )− pΦ(µ

σ − λσ),

and p = e−λµ+λ2σ2/2.

4Thinning is exponential G (z) = 1− e−λ(z−b) whenever the
distribution of Zt |Z0,ZT for 0 < t < T is a Brownian bridge.



A p.d.f. for the survivors

The p.d.f. of the distribution of survivors hλ



Survivorship Distribution: Moments

The density hλ is exponential family so the maximum
likelihood estimate of the parameters are obtained from the
moments.

First Moment:
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Functions of 2 parameters,

µ
σ and λσ. p = e−λµ+λ2σ2/2



How much difference to the mean does

survivorship make?

Assuming σ = 1, E (Z )− µ = λ
k pΦ(µ− λ)

E (Z )− µ as a function of µ, and λ



How much difference to the variance does

survivorship make?

Var(Z ) = 1 + λ
k

[
ϕ(µ)− λp

k Φ(µ)Φ(µ− λ)
]



When do I need to take survivorship into account?

When we are close to the barrier (distance measured in
units of σ) there is more “thinning” so

the mean of the survivors >> unconditional mean
Variance of the survivors < unconditional variance

The unconditional moments are biased.

When there is selective dropout, treatments appear more
effective, especially if the outcome is highly variable.
(Risky investors have apparently better performance a
posteriori)

We should adjust estimators for survivorship using the
corrected moments above.



Why multivariate time series data is often

incomplete.

There are often related time series which are disregarded.
We may

Analyze stock without corresponding index,
analyze blood pressure without diet, alcohol, physical
activity, etc.

Does the world stop turning when I sleep? There are gaps
in data collection nights, holidays, week-ends, sick-days,

Asynchronous reporting. Weight, lab test results at
discrete non-synchronous times.



Example of asynchronous Observations

Suppose I wish to study the joint behaviour of stock
market indices, e.g. DJIA, Hang Seng, etc. Usually use
LOCF then treat as a synchronous multivariate
observation. Harmless if small volatility and reasonably
frequent observations. However, 12 hours separate indices
in Hong Kong from New York. Holidays and market
closures are additional complications.
May have nonsynchronous observations on a patient lab
tests, clinical visits (e.g. MACS dataset)



Example: asynchronous measurements

Two correlated processes, measurements at different
times. Blue=observed.



Example: asynchronous measurements

If this is Markovian, in order to impute the value A, can I
restrict to measurements in green window? Not even!



Example: Asynchronous measurements

If we had observed values everywhere, Markov property
allows us to restrict to the smaller (blue) window
containing nearest neighbours.
Imputed observations allows us to reduce the size of the
(immediate) problem. So use imputed neighbouring
missing values (“o”) in blue rectangle to simulate value at
point A . Move along and repeat.



Gibb’s Sampling..... A Dummy’s guide

Begin with completed data set: missing values imputed
arbitrarily (e.g. mean, or purely random)
Gibbs Sampling5: Repeat many times:
Move about (systematically? at random?)

1 Draw parameter values from their posterior distribution
given the complete data (or estimate parameters from
completed data set as in stochastic EM algorithm)

2 Impute a missing value using the conditional distribution
given the neighbours and the parameters. Repeat for all
missing values.

5Gilks et al. (1996)



Example: Gibbs Sampling

Consider a random walk Yt , t = 1, 2, ...10 with N(µ,σ2)
increments. The observation at t = 5 is missing. The
conditional distribution of Y5 given Y4,Y6 is

N

(
1

2
(Y6 + Y4),

σ2

2

)
so repeatedly:

1 Impute the value of Y5 ∼ N
(
1
2(Y6 + Y4),

σ̂2

2

)
2 Generate σ2 from its posterior distribution.

1
σ2 v Gamma

(
n−1
2 , 2

(n−1)S2

)
where S2 = sample

variance of Xi = Yi+1 − Yi .

Movie: Gibbsdemo



Example: Gibbs Sampling - imputed values of Y

The imputed values of Y5 ∼ N(12(Y6 + Y4),
σ2

2 )



Example: Gibbs Sampling - imputed values of Y

The imputed values of Y5 ∼ N(12(Y6 + Y4),
σ2

2 )



Example: Gibbs Sampling

The values of σ2 sampled from posterior



Example: Gibbs Sampling for a 2d Random Walk

Consider a 2 dimensional random walk (Yt), t = 1, 2, ...10
with bivariate N(µ,Σ) increments.

The observation at t = 5 is missing.

The conditional distribution of Y5 given Y4, Y6 is

Y5|Y4, Y6 ∼MVN

(
1

2
(Y6 + Y4),

1

2
Σ

)
Repeatedly draw µ,Σ them from their posterior
distribution , the Normal-inverse-Wishart (or re-estimate
µ,Σ from completed data). and then impute Y5

Movie: Gibbsdemo2



What Did We Just Do?? The Gibbs Two-step.

1 Generated (imputed) Ymis |µ, Σ using P(Ymis |µ, Σ,Yobs).
2 (Bayes) Generate µ, Σ from p(µ, Σ|Y ) . MCMC

theory shows (under some conditions) the process
converges to its stationary distribution for which µ, Σ are
draws from the posterior distribution given the data Yobs ,
and Ymis are draws from the predictive distribution
P(Ymis |µ, Σ,Yobs).



The Gibbs Two-step.

1 Generate (impute) Ymis |µ, Σ using P(Ymis |µ, Σ,Yobs).
As alternative to 2 above we may

2* Obtain the maximum likelihood estimate of
µ, Σ|Ymis ,Yobs

This 2-step algorithm (Gibbs Sampling) is a special case of
Markov Chain Monte Carlo. It lies at the heart of most of
missing data imputation. The Bayes version is often called
Data Augmentation6.

6Tanner and Wong, 1987



Gibbs alternative to mean imputation: simulate

parameters, impute unobserved data

Imputation requires some model for the data, observed
and missing.

If our interest is in a specific parameter we could use EM
algorithm (e.g. mean imputation). Using simulated values
rather than the mean this is the “stochastic EM”
algorithm.

Simulating both parameters and missing values honours
both the random characteristics of the data and the
uncertainty concerning the parameter value. Under the
correct model, we obtain consistent estimators of all
parameters.



Generating from a difficult joint distribution: The

Hammersley-Clifford Theorem

A joint distribution is completely determined by its
conditional distributions.

We can generate from a joint distribution in small bits:
i.e. generate from each of the conditional distributions of
Yi given the others. i.e.

generate Y1|Y2,Y2, ....,Yd , then
generate Y2|Y1,Y3, ....,Yd ,
generate Y3|Y1,Y2,Y4....,Yd , etc.



Question: www.socrative.com (calgary)

Suppose we begin with arbitrary values of (Y1 = 1,Y2 = 0)
and then repeatedly generate:

1. Y1 =
1
2Y2 + ε where ε is an independent N(0,1) random

variables.

2. Y2 =
1
2Y1 + ε where ε ∼ independent N(0,1).

Then after 1000 iterations of steps 1&2 the pair of values
generated (Y1,Y2)

A. Will explode to infinity

B. Will converge to a point.

C. Will resemble independent normal random variables

D. Will resemble correlated normal random variables with
correlation 1

2 .



Variations on Gibbs in higher dimension

Suppose process X is d-dimensional, d > 2.

In general we adopt an order in which the d variables are
drawn and updated. The original order 1, 2, 3, . . . d called
systematic scan.

If we draw a random component from {1, 2, 3, . . . d} to
determine next variable sampled called Random-scan (this
chain is reversible)

Updating highly correlated components jointly appears to
result in faster convergence to stationary distribution.

Often updating occurs in blocks of components



Poor (Wo)man’s Algorithm for dealing with

incomplete data revisited

Begin with a model and a preliminary estimate of the
parameters
When you wish to estimate a parameter in the presence of
incomplete data, write down the complete-data estimator.

1 Simulate any missing values required for the estimate
using the conditional distribution given the observed data
and the current parameter value.

2 Calculate the value of the estimate treating the simulated
values as if they were observed. Alternatively draw the
parameters from the posterior distribution.

Repeat steps 1-2 until convergence.
You may use as a parameter point estimator the average of
the all values obtained on step 2 (perhaps leaving off break-in
period)



Numerical Shortcuts for Gaussian models

See Schafer (1997). The conditional distributions are all
regression models. There are numerical shortcuts to obtaining
the conditional parameters.



Sweeping: Now not just for curlers!

Sweep Operator:7 A computational efficient way to generate
parameters of conditional distribution for multivariate normal.
Operates on one row of symmetric matrix at a time.

A = SWP [k ]G :

Ajl ←


Gjl −

GjlGkl

Gkk
for j 6= k , l 6= k

Gjl

Gkk
for j 6= k , l = k or j = k , l 6= k

− 1
Gkk

for j = l = k

SWP[1,2,...,k] indicates sweeping on rows 1 to k successively.

7see Schafer (1997) P. 159



Sweeping up the regression coefficients



Poor (Wo)man’s Algorithm for dealing with

incomplete data revisited yet again

Begin with a model and a preliminary estimate of the parameters

When you wish to estimate a parameter in the presence of

incomplete data, write down the complete-data estimator.

1 Simulate any missing values required for the
estimate using the conditional distribution given
the observed data and the current parameter
value.

2 Calculate the value of the estimate treating the simulated

values as if they were observed. Alternatively draw the

parameters from the posterior distribution.

Repeat steps 1- until the convergence.

You may use as a parameter point estimator the average of the all

values obtained on step 2 (perhaps leaving off break-in period)



Fully Conditional Specification versus joint

modelling

Gibbs sampling or data augmentation assumed that we begin
with a joint distribution and generate from conditionals
derived from it.

What if our ”model’ consists only of specified conditional
distributions for the missing variables given the others.

Like specifying regression relationships among a set of
variables in place of a multivariate normal assumption.

Are these consistent with any multivariate distribution?



Imputation by Chained Equations

Use fully conditional specification to describe your ”model’

1 Impute values of any unknowns in the estimator under the
assumed conditional distribution given the observed data
and the current parameter value.

2 Calculate the value of the parameter estimator treating
the imputed values as if they were observed, or draw
parameters from posterior distribution given completed
data.



Fully Conditional Specification: Pros

A suitable joint model often hard to specify.
Instead, we specify generating mechanisms (regression
relationships) e.g.
P(Y1|Y3,Y4),P(Y2|Y1,Y3,Y4),P(Y3|Y2,Y4) not
obtained from a joint distribution and run Gibbs using
these to impute values.
No laborious calculation of conditional distributions.
In a model for Yj you control which other variables are
important to be included and how.
Allows some variables to be continuous (e.g. normal) and
others discrete/dichotomous. (e.g. use logistic
regression). For example you might assume Y1|Y2,Y3 is
N(α + βY2, σ2) and
logit(P(Y3 = 1)) = a+ b1Y1 + b2Y2.



Fully Conditional Specification: Cons

1 Your ”model’ may not be a model. The conditional
distributions may not be compatible with any joint
distribution.

2 May be subject to ”feedback loops”, converge slowly, fail
to converge, loop, explode.

3 Will this converge to a stationary distribution? Hard to
assess convergence.

4 If it converges, the joint distribution is described
”numerically”. Harder to understand.

An underdeveloped alternative: copula-based imputation
models.



Convergence. A nice place if you can get there....

Convergence in distribution is very difficult to assess.

The early iterations reflect (retain a memory of) the
starting value, and these are called the burn-in.

After the burn-in, we say the chain has converged (poor

language). We omit the burn-in period from averages.

Methods for determining an appropriate length of the
burn-in period called convergence diagnostics.



But how do I know I have converged?....

One way of determining whether the chain is close to
stationarity is to run parallel chains with different starting
values. How many?

Several long runs (Gelman and Rubin,1992) helps to
indicate convergence and provides an estimator of
standard error.

One very long run (Geyer, 1992) reaches regions in the
sample space a shorter run might not reach.



Autocorrelation Function?

We only have a draw from the stationary distribution
f (y) once the Markov chain has converged to its
stationary distribution.

Can use visual inspection of autocorrelation function to
see whether the effect of the initial condition on the chain
have died out.



Different Starting Values?

Can use visual inspection of process with different starting
values to see whether the effect of the initial condition on
the chain have died out.

For example, two chains, one starting with 3 the other
with -3.



In general, for multiple chains....

Delete burn-in period, then:

Compare quantities “between” chains and “within”
chains.

e.g. Compare means, variances, kernel density estimates.

Hard to formally compare (since formal exact tests not
available)



For a single (long chain)

Divide the chain into a number of long blocks and pretend
they are independent chains.

The Geweke statistic8 compares the mean of the first
10% of the chain with that of the last 50%.

Could also use the variance or another moment.

Can also plot; the cumulative median, and upper and
lower x% intervals, moving averages, empirical
characteristic functions?

8Geweke, J. 1992.



Gelman-Rubin Statistics-I

Conduct multiple (n) MCMC chains each with different
starting values.

Select a set of quantities of interest, exclude the “burn-in”
period and thin the chain (select every m′th value).

Compares the mean of the empirical variance within
chains to the variance of the mean across the chains.

see:

http://faculty.washington.edu/rayh/558 2004/ppt files lectures/Diag.PPT



One Long Run or Many Short Runs?

Many short runs allow a fairly direct check on whether
convergence has occurred. However this depends on good
coverage for the set of initial parameter vectors.

Many (too) short runs may never reach regions in the
sample space.

Try to conduct many (5-10?) runs.

Other Statistics:

Heidelberger-Welsh: tests for stationarity of the chain.

Raftery-Lewis: based on how many iterations are
necessary to estimate the posterior for a given quantity.

see:

http://faculty.washington.edu/rayh/558 2004/ppt files lectures/Diag.PPT



Convergence and Faith

Conventional wisdom says not to worry about
convergence9, if you can avoid periodicity and ”getting
stuck” in a portion of the space. Worry just enough.

Convergence of a FCS. Half Theorem, Half Faith.

9technically this requires irredicible, aperiodic and recurrence.


	Asynchronous observations



