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Question: www.socrative.com (calgary)

Which of the following statements are true?

A. When the response Y is MAR, then the conditional
distribution of Y given R = 0 is identifiable from the
observed data.

B. When the response Y is MNAR, then the conditional
distribution of Y given R = 0 is identifiable from the
observed data.

C. When the response Y is MAR, then the joint likelihood
for (R ,Yobs) is proportional to the likelihood for Yobs

D. When the response Y is MCAR, then the joint likelihood
for (R ,Yobs) is proportional to the likelihood for Yobs

E. Prior to using the MAR assumption, you should use a
formal test of its validity.



Sensitivity2 analysis

Why be concerned about possible failure in the model1 for
missingness (e.g. MAR)?

Statisticians prefer models that allow some test of fit.

The MAR assumption implies that P(∗|R = 1) and
P(∗|R = 0) are the same.

This assumption allows properties under P(∗|R = 0) to
be estimated based on the data observed for R = 1.

Since there are NO observed data for R = 0, the equality
of P(∗|R = 1) and P(∗|R = 0) cannot be tested.

1“What, me worry?” the famous non-robust statistician, Alfred E.
Newman

2“TO BOLDLY GO WHERE NO MAN HAS GONE BEFORE...”
(only women)



Nonignorable missing data models: R and Y till

death do they part...

MAR implies that the likelihood for the observed data
factors:

P(R ,Yobs |θ) = P(R |Yobs)P(Yobs |θ)

P(Yobs |θ) is the “likelihood ignoring the missing data
mechanism”.

The observed data likelihood P(Yobs |θ) is proportional to
the joint likelihood P(R ,Yobs |θ) if and only if the data
are MAR (includes MCAR).

Cure: Collect sufficient covariates X related to
missingness to obtain MAR: P(R |Y ) = P(R |Yobs).

3

3The price is parsimony



MNAR models

For a MNAR model, both R and Yobs carry information
about θ and we need to model them jointly.

Possible models for modeling (R ,Y ) jointly are:

Selection models (model Y marginally)
Pattern mixture models (model R marginally)

There is a one-to-one relationship between these two
models.



Selection models

In a selection model the probability the data are observed is
assumed to depend on the value of the response Y :

P(Ri ,Yi |θ) = P(Ri |Yi , γ)P(Yi |θ)

(Heckman (1976)) where parameters θ and γ are distinct.

The response Yi is generated from the model P(Yi |θ)
(marginal distribution of Yi ).

The i ’th observation is observed with probability
P(Ri |Yi , γ) (conditional probability of observing the i ’th
observation) which may depend on the response.

The survivorship distribution discussed in the previous
session is a selection model.



Pattern mixture models

In a pattern mixture model the observed data and the
unobserved are assumed to follow different distributions:

P(Ri ,Yi |θ) = P(Yi |Ri , θ)P(Ri |γ)
(Glynn et al. (1986)) where parameters θ and γ are distinct.

The i ’th observation is observed with probability P(Ri |γ)
(marginal distribution of Ri ).
The response Yi is generated from the model P(Yi |Ri , θ)
(probability distribution of Yi for a given missing pattern).
P (Y ) =
P (Y |R = 1)P (R = 1) + P (Y |R = 0)P (R = 0)
is a mixture of P (Y |R = 1) and P (Y |R = 0).
Pattern mixture models are useful for sensitivity analyses.
(More on this shortly.)



Question: www.socrative.com (calgary)

In which of the following studies would you assume a MAR
model, a Selection Model, or Pattern Mixture Model.?

A. Y is the white blood count of patients at a university
clinic is collected periodically over a four-year period.
Some patients drop out of the study.

B. Y is the blood pressure of patients undergoing treatment
for high blood pressure over a 3 year period. Some
patients drop out of the study.

C. A study asks individuals about whether they use illegal
drugs and Y =the amount used. Some study participants
refuse to answer.

D. A Statistics Canada study of Y =foreign income uses
Canada Revenue Agency data (anonymized). Many of the
forms report zero foreign income.



Question: www.socrative.com (calgary)

In which of the following studies would you assume a MAR
model, a Selection Model, or Pattern Mixture Model.?

E. In an HIV/AIDS study, participants are asked about Y =
the total number of sexual partners over a five year
period. Some participants do not answer. (It is thought
that women and men might report differently).

F. In an HIV/AIDS study participants are asked about the
total number of sexual partners over a five year period.
Some participants do not answer.(It is thought that
non-response may be related to sexual orientation which
was not recorded in the study).



Question: www.socrative.com (calgary)

In which of the following studies would you assume a MAR
model, a Selection Model, or Pattern Mixture Model.?

G. In a poll, individuals with landline phones are asked about
proposed CPP legislation. It is believed that more seniors
have landline phones and agree to participate. (Age of
the respondents is not recorded).



Sensitivity analysis

Different MNAR models may fit the data equally well but
may give different conclusions.

As we have already noted, the observed data cannot be
used to decide if a given MNAR mechanism is valid.

One approach to this problem is to use a sensitivity
analysis in which a number of plausible MNAR models are
fitted to the data.

The degree to which the inferences are stable across the
models gives an indication of the confidence that can be
placed in them.

One approach to generating these MNAR models is to
use pattern mixture models or selection models.

We consider some illustrative examples.



Example: Pattern mixture models

Suppose Y1i is always observed and Y2i is sometimes missing.
Let Ri = 1 if Y2i is observed.

For a pattern mixture model, the likelihood of the observed
data is:

n

∏
i=1

[f (y1i , y2i |Ri = 1, θ)P(Ri = 1)]Ri

×
n

∏
i=1

[f (y1i |Ri = 0, θ)P(Ri = 0)]1−Ri

There is essentially NO information on the conditional
distribution f (y2|y1,R = 0) without the MAR
assumption.

Under MAR, f (y2|y1,R = 0) = f (y1|y2,R = 1) so we
can estimate f (y2|y1,R = 0) using the observed data.



Example of pattern mixture model: BVN

Y1i is always observed and Y2i is sometimes missing.

Ri = 1 if Y2i is observed.

For r = 0, 1, suppose (Y1,Y2)|R = r is BVN with mean

µ(r) =
[
µ
(r)
1 , µ

(r)
2

]
and variance

Σ(r) =

[
σ
(r)
11 σ

(r)
12

σ
(r)
12 σ

(r)
22

]

Let π = P (both Y1,Y2 are observed).

There are 11 parameters in the model.



Example of pattern mixture model: BVN

Assuming a pattern mixture model, the likelihood based
on the observed data is

n

∏
i=1

[πf (yi1, yi2|R = 1)]Ri [(1− π)f (yi1|R = 0)]1−Ri

which is a function of 8 parameters

µ
(1)
1 , µ

(1)
2 , σ

(1)
11 , σ

(1)
12 , σ

(1)
22 , µ

(0)
1 , σ

(0)
11 , π

These parameters are estimable based on the observed
data.

For example, µ̂1 = ȳ1 since Y1i is always observed.

How do we estimate the other 3 parameters: µ
(0)
2 , σ

(0)
12 ,

and σ
(0)
22 ?



Example of pattern mixture model: BVN

Since Y2 is MAR, we have
P(R = 1|Y1,Y2) = P(R = 1|Y1) (missingness depends
only on observed quantities) so

f (Y2|Y1,R = 1) =
f (Y2,R = 1|Y1)

P(R = 1|Y1)

=
P(R = 1|Y1,Y2)f (Y2|Y1)

P(R = 1|Y1)
= f (Y2|Y1).

Similarly f (Y2|Y1,R = 0) = f (Y2|Y1).

In other words the unobserved conditional distribution
Y2|Y1,R = 0 can be estimated from the observations
Y2|Y1,R = 1.



Example of pattern mixture model: BVN

For the BVN model f (Y2|Y1,R = 0) and
f (Y2|Y1,R = 1) are regression models.

Under the MAR assumption the parameters (slope,
intercept, variance of error) are identical given R = 1 or
R = 0.

Therefore there are only 8 unknown parameters in this
model.

Under the pattern mixture model

µ2 = πµ
(1)
2 + (1− π)µ

(0)
2 .

How do we estimate µ2?



Example of pattern mixture model: BVN

Let µ̂
(1)
2 be the mean of the observed Y2i for which

Ri = 1.

Use fully observed data (Y1i ,Y2i ) for which Ri = 1 to
estimate β0, β1, the coefficients of the regression of Y2

on Y1.

Let µ̂
(0)
2 = β̂0 + β̂1y

(0)
1 .

Note that µ̂
(0)
2 = β̂0 + β̂1y

(0)
1 is the average of the

imputed Y2 values (with Ri = 0) using regression
imputation.

The ML estimate of µ2 is µ̂2 = π̂µ̂
(1)
2 + (1− π̂)µ̂

(0)
2 .

Regression imputation provides the ML estimates of the
means in Normal models.



Example of pattern mixture model: BVN

Suppose the missingness of Y2 depends on Y2 but not on
Y1, so Y2 is NMAR.

As before, f (Y1|Y2,R = 0) = f (Y1|Y2,R = 1) so there
are only 8 parameters, all estimable.

For the BVN model the conditionals are regression
models. For R = 1 data, regress Y1 on Y2 to get
regression coefficients β̂0, β̂1.

Since Y1 = β̂0 + β̂1Y2 + ε for both R = 1 and R = 0,

we can write the ML estimates as µ̂
(1)
1 = β̂0 + β̂1µ̂

(1)
2

and µ̂
(0)
1 = β̂0 + β̂1µ̂

(0)
2 or µ̂

(0)
2 =

µ̂
(0)
1 −β̂0

β̂1
from which we

obtain µ̂2 = π̂µ̂
(1)
2 + (1− π̂) µ̂

(0)
2 .



Sensitivity analysis of brain weight data - MNAR

Recall the brain weight data that we analyzed previously:
Y2 = log(brain weight) and Y1 = log(head size).

Y2 was sometimes missing.

Suppose Y2 is MNAR.

For example, suppose that the mean of the distribution of
brainweights for R = 1 (observed) is larger (smaller) than
the mean of the distribution of brainweights for R = 0
(not observed).

To model this we could assume a pattern mixture in
which E (Y2|R = 0) = E (Y2|R = 1) + ∆.



Sensitivity analysis of brain weight data - MNAR

Suppose we assume a pattern mixture model with only
the mean changing, that is,

E (Y2|R = 0) = E (Y2|R = 1) + ∆

∆ = 0 corresponds to MAR.

If a value of ∆ is assumed then all the parameters are
estimable.

A sensitivity analysis can be done by fitting the model for
a range of ∆ values (including ∆ = 0).

Interested in how the conclusions change as ∆ varies.



Sensitivity analysis of brain weight data: MNAR

If multiple imputation is used then a sensitivity analysis
can be done by adding a constant ∆ to every imputed
value and redoing the analysis.

Usually more than one value of ∆ is used (positive and
negative values).

Values of ∆ are chosen which are plausible for the given
context.

Interested in how the conclusions change as ∆ varies.



Original analysis of brain weight data ∆=0 (MAR)

Analyze the brainweight data assuming MAR.
Y2 = log(brain weight), Y1 = log(head size).
Use multiple imputations and software MICE.
imp<- mice(brainweight,method=”norm”,m=5,maxit=1,seed=1)

fit<- with(imp,lm(lweight˜lsize+sex))

round(summary(pool(fit)),3)

est se t df Pr(>|t|) nmis

(Intercept) 1.577 0.531 2.971 14.979 0.010 NA

log(headsize) 0.679 0.064 10.592 15.034 0 130

sex -0.003 0.013 -0.250 16.219 0.805 0



Sensitivity analysis of brain weight data ∆ = +0.1

d <- 0.1
imp$imp$lsize <- imp$imp$lsize +d
fit2<- with(imp,lm(lweight˜lsize+sex))
round(summary(pool(fit2)),3)

est se t df Pr(>|t|) nmis

(Intercept) 3.420 0.585 5.844 19.664 0 NA

log(headsize) 0.454 0.070 6.440 19.575 0 130

sex -0.040 0.014 -2.917 29.515 0.007 0

Does this materially change the conclusions?
“sex” coefficient is now significant.
Other conclusions are similar.



Sensitivity analysis of brain weight data ∆ = -0.1

d <- -0.1
imp$imp$lsize <- imp$imp$lsize +d
fit3<- with(imp,lm(lweight˜lsize+fem))
round(summary(pool(fit3)),3)

est se t df Pr(>|t|) nmis

(Intercept) 2.711 0.408 6.647 15.961 0 NA

log(headsize) 0.545 0.050 11.006 16.074 0 130

sex -0.010 0.011 -0.937 35.257 0.355 0

Conclusions are similar to original analysis.



Sensitivity analysis: More general pattern mixture

models

For the pattern mixture model

E (Y2|R = 0) = E (Y2|R = 1) + ∆

a sensitivity analysis can done by adding a constant ∆ to
every imputed value. An equivalent model is

E (Y2|Y1,R = 0) = E (Y2|Y1,R = 1) + ∆.

1 We might wish the shift to depend on Y1, for example,
E (Y2|Y1,R = 0) = E (Y2|Y1,R = 1) + d (∆,Y1) where
d might be a linear function of Y1.

2 We might also shift the data using a scale determined by
some link function g , that is,
E (Y2|R = 0) = g−1 [g(E (Y2|R = 1)) + ∆].

3 We could also combine both 1 and 2.



Sensitivity analysis: Selection Model

In a selection model the probability the data are observed
is assumed to depend on the value of the response:

P(R ,Y |θ) = P(R |Y , γ)P(Y |θ)

For example for the brain weight data we might assume

logit (P [R = 0|Y2 = y2]) = γ0 + γ1y2

If a value of γ1 is assumed then estimation is possible.

A sensitivity analysis can be done by fitting the model for
a range of γ1 values (including γ1 = 0).

Interested in how the conclusions change as γ1 varies.



Monotone dropout and sensitivity analysis - Diggle

and Kenward(1994)

For longitudinal data recall that we have monotone dropout if
yk missing implies yk+1, yk+2, . . . are missing.

Full data model: Yi |xi v MVN (xiβ, Σ)
Model for dropout:

log it

(
pk

1− pk

)
= γ0 + γ1yk + γ2yk−1

where pk = P (dropout at time k).

γ1 = 0 corresponds to random dropouts (MAR)

γ1 = γ2 = 0 corresponds to completely random dropouts
(MCAR).

Models can be fit using ML and likelihood ratio tests can
be used to test hypotheses: γ0 = 0 and γ1 = γ2 = 0.



National Research Council Special Report on

Missing Data in Clinical Trials

“There is no easy fix for missing data at the analysis
stage. Too many current analyses of clinical trials apply
naive methods for missing data adjustment that make
unjustifiable assumptions, such as last-observation
carried-forward approach.”

Sensitivity analysis is a relatively undeveloped area of
statistical analysis and at the moment there are no clear
guidelines for defining the appropriate sensitivity analysis.
(See: Ware et al. (2012)).



National Research Council Special Report on

Missing Data in Clinical Trials

Recommendation 15 of the N.R.C. Special Report:
Sensitivity analysis should be part of the primary reporting
of findings from clinical trials. Examining sensitivity to
the assumptions about the missing data mechanism
should be a mandatory component of reporting.

“It is important that additional research be carried out so
that methods to carry out sensitivity analyses for all of
the standard models are available.”



R software MICE (Multivariate Imputation by

Chained Equations)

The R package mice (Version 2.12, 2015-02-20) imputes
incomplete multivariate data by chained equations. The
software includes automatic predictor selection, passive
imputation, post-processing of imputed values, specialized
pooling routines, model selection tools, and diagnostic graphs.

See Flexible Imputation of Missing Data by Stef van
Buuren (2012). Book has pseudo-code for many of the
algorithms implemented in MICE so you can understand
what the algorithm does. (useful for writing your own code!)

van Buuren and Groothuis-Oudshoorn (2011), MICE:
Multivariate Imputation by Chained Equations in R (Issue
45 of Journal of Statistical Software is devoted to
multiple imputation.)



R software mi version 1.0, 2015-04-16: Missing

data imputation and model checking

The mi package performs multiple imputation for data
with missing values. Iteratively draws imputed values
from the conditional distribution for each variable, given
observed and imputed values of the other variables.
Approximates a Bayesian solution; multiple chains,
convergence assessed after a pre-specified number of
iterations.
Allows customization of conditional models and missing
values for each variable. Provides graphics to visualize
missing data patterns, diagnose the models used to
generate the imputations, and to assess convergence.
(See: Su et al. (2011).)
Functions included to run statistical models
post-imputation.



Checking the imputation using mi

from Su et. al. (2011)



R software implementing algorithms in Schafer

norm 1.0-9.5: Based on the software NORM by Schafer
(1999) (available, free). Implements multiple imputation
based on the multivariate normal model (Chapters 5&6).
Includes data augmentation (DA) and MLE for
incomplete data using the EM algorithm.

cat 0.0-6.5: Implements multiple imputation of
categorical data according to log-linear model - Chapters
7&8. MCMC method for simulating posterior draws
under a hierarchical loglinear model.

pan 1.3: Multiple imputation for multivariate panel or
clustered data. Includes functions for MLE for generalized
linear mixed models and imputation of multivariate panel
or cluster data.



Software in SAS

PROC MI (V9 onwards): Includes an implementation of
Schafer’s NORM (multiple imputation based on the
multivariate normal model).

IVEware: Multiple imputation using chained equations
(fully conditional specification models).

PROC CALIS: Fits ML to the observed data if
method(mlmv) is specified. Assumes data are
multivariate normal and MAR.



Software in Stata

mi: Includes an implementation of Schafer’s NORM as
well as many other multiple imputation routines

ice: package by Patrick Royston which implements
multiple imputation by chained equations

sem: Fits ML to the observed data if METHOD=FIML
(full information maximum likelihood) is specified.
Assumes data are multivariate normal and MAR.



Splus

The S-PLUS library S+MissingData is the most extensive
implementation of techniques described in Schafer’s book.

The library has functions to fit the multivariate normal,
log-linear and general location models using EM algorithm and
DA. The DA algorithms also produce multiple imputations.



Mplus

Mplus Version 7: “Mplus offers researchers a wide choice of
models, estimators, and algorithms in a program that has an
easy-to-use interface and graphical displays of data and
analysis results. The Mplus modeling framework draws on the
unifying theme of latent variables. The generality of the Mplus
modeling framework comes from the unique use of both
continuous and categorical latent variables.”



MATLAB:

ecmmvnrmle: Multivariate normal regression with missing
data

ecmnmle: Mean and covariance of incomplete multivariate
normal data

ecmnstd: Standard errors for mean and covariance of
incomplete data

knnimpute replaces NaNs in DATA with the corresponding
value from the nearest-neighbor column using Euclidean
distance. If the nearest neighbor column also contains a NaN
value, then the next nearest column is used.



The Prevention and Treatment of Missing Data in

Clinical Trials: Limiting Missing Data

Target a population that is not adequately served by
current treatments and hence has an incentive to remain
in the study.

Include a run-in period in which all patients are assigned
to the active treatment, after which only those who
tolerated and adhered to the therapy undergo
randomization.

Allow a flexible treatment regimen that accommodates
individual differences in efficacy and side effects in order
to reduce the dropout rate.

Shorten the follow-up period for the primary outcome.

Avoid outcome measures that are likely to lead to
substantial missing data.



The Prevention and Treatment of Missing Data in

Clinical Trials: Limiting Missing Data

Select investigators who have a good track record.

Set acceptable target rates for missing data and monitor
the progress of the trial with respect to these targets.

Provide incentives to investigators and participants for
completeness of data collection.

Limit the burden and inconvenience of data collection on
the participants, and make the study experience as
positive as possible.

Provide continued access to effective treatments after the
trial, before treatment approval.



The Prevention and Treatment of Missing Data in

Clinical Trials: Limiting Missing Data

Train investigators and study staff that keeping
participants in the trial until the end is important,
regardless of whether they continue to receive the
assigned treatment. Convey this information to study
participants.

Collect information from participants regarding the
likelihood that they will drop out, and use this information
to attempt to reduce the incidence of dropout.

Keep contact information for participants up to date.
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