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INTRODUCTION

In recent years, there have been remarkable advances in methods for
analyzing longitudinal data.

When the response variable is continuous, familiar linear regression models
can be extended to handle the correlated outcomes.

For linear models the correlation among repeated measures can be modelled
explicitly (e.g., via unrestricted or covariance pattern models) or implicitly

(e.g., via introduction of random effects).

The latter approach yields a versatile class of regression models for
longitudinal data known as linear mixed effects models (Session 2).

5

LONGITUDINAL DATA: BASIC CONCEPTS

Defining feature of longitudinal studies is that measurements of the same
individuals are taken repeatedly through time.

Longitudinal studies allow direct study of change over time.

Objective: primary goal is to characterize the change in response over time
and the factors that influence change.

With repeated measures, we can capture within-individual change.

Complications: (i) repeated measures on individuals are correlated,
(ii) variability is often heterogeneous over time.
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Terminology

Individuals/Subjects: Participants in a longitudinal study are referred to as
individuals or subjects.

Occasions: In a longitudinal study individuals are measured repeatedly at
different occasions or times.

The number of repeated observations, and their timing, can vary widely from
one longitudinal study to another.

When number and timing of the repeated measurements are the same for all
individuals, study design is said to be “balanced” over time.
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Example 1: Treatment of Lead-Exposed Children Trial

• Exposure to lead during infancy is associated with substantial deficits in
tests of cognitive ability

• Chelation treatment of children with high lead levels usually requires
injections and hospitalization

• A new agent, Succimer, can be given orally

• Randomized placebo-controlled trial examining changes in blood lead level
during course of treatment

• 100 children randomized to placebo or Succimer

• Measures of blood lead level at baseline, 1, 4 and 6 weeks
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Table 1: Mean blood lead levels (and standard deviation) at baseline, week
1, week 4, and week 6.

Group Baseline Week 1 Week 4 Week 6

Succimer 26.5 13.5 15.5 20.8

(5.0) (7.7) (7.8) (9.2)

Placebo 26.3 24.7 24.1 23.2

(5.0) (5.5) (5.7) (6.2)
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Figure 1: Plot of mean blood lead levels at baseline, week 1, week 4, and
week 6 in the succimer and placebo groups.
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Example 2: Influence of Menarche on Changes in Body

Fat

• Prospective study on body fat accretion in a cohort of 162 girls from the
MIT Growth and Development Study.

• At start of study, all the girls were pre-menarcheal and non-obese

• All girls were followed over time according to a schedule of annual
measurements until four years after menarche.

• The final measurement was scheduled on the fourth anniversary of their
reported date of menarche.

• At each examination, a measure of body fatness was obtained based on
bioelectric impedance analysis.
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Figure 2: Timeplot of percent body fat against age (in years).
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Consider an analysis of the changes in percent body fat before and after
menarche.

For the purposes of these analyses “time” is coded as time since menarche
and can be positive or negative.

Note: measurement protocol is the same for all girls.

Study design is almost “balanced” if timing of measurement is defined as
time since baseline measurement.

It is inherently unbalanced when timing of measurements is defined as time
since a girl experienced menarche.
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Figure 3: Timeplot of percent body fat against time, relative to age of
menarche (in years).
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LONGITUDINAL DATA: BASIC CONCEPTS

The primary goal is to characterize the change in response over time and the
factors that influence change.

A longitudinal study can estimate change with great precision because each
individual acts as his/her own control.

By comparing each individual’s responses at two or more occasions, a
longitudinal analysis can remove extraneous, but unavoidable, sources of
variability among individuals.

This eliminates major sources of variability or “noise” from the estimation
of within-individual change.
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Notation

Let Yij denote response variable for ith subject on jth occasion.

Yij is assumed to be continuous; later (Session 4) we consider cases where
Yij is binary or a count.

We assume there are ni repeated measurements on the ith subject (i =
1, ..., N) and each Yij is observed at time tij.

Associated with each response, Yij, there is a p× 1 vector of covariates, Xij.

Covariates can be time-invariant (e.g., gender) or time-varying (e.g., time
since baseline).

Can group Yij’s into a ni × 1 vector Yi, and Xij’s into a ni × p matrix Xi.
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Covariance and Correlation

An aspect of longitudinal data that complicates their statistical analysis
is that repeated measures on the same individual are usually positively
correlated.

This violates the fundamental assumption of independence that is the
cornerstone of many statistical techniques.

Next, we define covariance and correlation matrices for longitudinal data.
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The covariance between responses at two occasions, say Yij and Yik,

σjk = E [(Yij − µj)(Yik − µk)] ,

where µj = E(Yij|Xij), is a measure of the linear dependence between Yij

and Yik.

The correlation between Yij and Yik is denoted by

ρjk =
E [(Yij − µj)(Yik − µk)]

σjσk

,

where σj and σk are the standard deviations of Yij and Yik.
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For the vector of repeated measures, Yi, we define the variance-covariance
matrix, Σ = Cov(Yi),

Cov




Yi1

Yi2
...

Yin


 =




Var(Yi1) Cov(Yi1, Yi2) · · · Cov(Yi1, Yin)
Cov(Yi2, Yi1) Var(Yi2) · · · Cov(Yi2, Yin)

... ... . . . ...
Cov(Yin, Yi1) Cov(Yin, Yi2) · · · Var(Yin)




=




σ2
1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

... ... . . . ...
σn1 σn2 · · · σ2

n


 ,

where Cov (Yij, Yik) = σjk = σkj = Cov(Yik, Yij).
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We can also define the correlation matrix, denoted by Corr(Yi),

Corr(Yi) =




1 ρ12 · · · ρ1n
ρ21 1 · · · ρ2n
... ... . . . ...

ρn1 ρn2 · · · 1


 .

This matrix is also symmetric, Corr (Yij, Yik) = ρjk = ρkj = Corr(Yik, Yij).

Note: Covariance and correlation matrices are commonly assumed to be
homogeneous across individuals.
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Example: Treatment of Lead-Exposed Children Trial

We restrict attention to the data from placebo group

Data consist of 4 repeated measurements of blood lead levels obtained at
baseline (or week 0), weeks 1, 4, and 6.

The inter-dependence (or time-dependence) among the four repeated
measures of blood lead level can be examined by constructing a scatter-
plot of each pair of repeated measures.

Examination of the correlations confirms that they are all positive and tend
to decrease with increasing time separation.
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Figure 4: Pairwise scatter-plots of blood lead levels at baseline, week 1, week
4, and week 6 for children in the placebo group.
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Table 2: Estimated covariance matrix for the blood lead levels at baseline,
week 1, week 4, and week 6 for children in the placebo group of the TLC
trial.

Covariance Matrix

25.2 22.8 24.2 18.4

22.8 29.8 27.0 20.5

24.2 27.0 33.0 26.6

18.4 20.5 26.6 38.7
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Table 3: Estimated correlation matrix for the blood lead levels at baseline,
week 1, week 4, and week 6 for children in the placebo group of the TLC
trial.

Correlation Matrix

1.00 0.83 0.84 0.59

0.83 1.00 0.86 0.60

0.84 0.86 1.00 0.74

0.59 0.60 0.74 1.00
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Some Observations about Correlation in Longitudinal Data

Empirical observations about the nature of the correlation among repeated
measures in longitudinal studies:

(i) correlations are positive,

(ii) correlations decrease with increasing time separation,

(iii) correlations between repeated measures rarely ever approach zero, and

(iv) correlation between a pair of repeated measures taken very closely
together in time rarely approaches one.
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MODELLING LONGITUDINAL DATA

Longitudinal data present two aspects of the data that require modelling:

(i) mean response over time

(ii) covariance

Models for longitudinal data must jointly specify models for the mean and
covariance.
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Modelling the Mean

Linear (later generalized linear) models widely used to model change in the
mean response over time:

Yij = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp + eij, j = 1, ..., ni.

Modelling the Covariance

Two broad approaches can be distinguished for modelling Σ = Cov(ei) =
Cov(Yi|Xi):

(1) Leave Σ unrestricted or assume covariance pattern model (e.g., AR-1)

(2) Random effects covariance structure (Session 2)
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Choices for Σ may depend on design: balance, timing and number of repeated
occasions, etc.

When design is balanced and number of occasions is small, unrestrictive
covariance model is often adopted (no assumptions on how variances and
covariances change over time).

With unbalanced data and/or large number of repeated measures,
unrestricted approach is not satisfactory.
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Summary of Key Points

• Longitudinal Studies: Individuals are measured repeatedly through time.

• Primary goal of longitudinal study is to measure change in response

• Two features of longitudinal data complicate their analysis:

– repeated measures are positively correlated
– variability is often heterogeneous over time

• These two features violate fundamental assumptions of linear regression
=⇒ Need regression techniqes that can handle correlated data with
heterogeneous variability.
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FURTHER READING

Fitzmaurice GM, Laird NM & Ware JH (2011). Applied Longitudinal

Analysis, 2nd Ed. Hoboken, NJ: Wiley. [See Chapters 1, 2]
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LINEAR MIXED EFFECTS MODELS

Basic idea: Individuals in population are assumed to have their own subject-
specific mean response trajectories over time.

Allow subset of the regression parameters to vary randomly from one
individual to another, thereby accounting for sources of natural heterogeneity
in the population.

Distinctive feature: mean response modelled as a combination of population
characteristics (fixed effects) assumed to be shared by all individuals, and
subject-specific effects (random effects) that are unique to a particular
individual.

The term mixed denotes that model contains both fixed and random effects.
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Example: Random Intercept Model

One traditional approach for handling correlation among repeated measures
is to assume it arises from a random subject effect,

Yij = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp + bi + ǫij.

In this model response for ith subject at jth occasion is assumed to differ
from the population mean,

E(Yij|Xij) = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp

by a subject effect, bi, and a within-subject error, ǫij.

It is assumed that bi ∼ N(0, σ2
b), ǫij ∼ N(0, σ2

ǫ ), and bi⊥⊥ ǫij.
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Figure 5 provides graphical representation of linear trend model:

Yij = (β0 + bi) + β1tij + ǫij

Overall mean response over time in the population changes linearly with time
(denoted by the solid line).

Subject-specific mean responses for two specific individuals, subjects A and
B, deviate from the population trend (denoted by the broken lines).

Individual A responds “higher” than the population average and thus has a
positive bi.

Individual B responds “lower” than the population average and has a
negative bi.

Inclusion of errors, ǫij, allows response at any occasion to vary randomly
above/below subject-specific trajectories (see Figure 6).
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Figure 5: Graphical representation of the overall and subject-specific mean
responses over time.
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Figure 6: Graphical representation of the overall and subject-specific mean
responses over time, plus errors.
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Covariance/Correlation Structure

The introduction of a random subject effect induces correlation among the
repeated measures.

The following “compound symmetry” covariance structure results:

Var(Yij|Xij) = σ2
b + σ2

ǫ

Cov(Yij, Yik|Xij, Xik) = σ2
b =⇒ Corr(Yij, Yik|Xij, Xik) =

σ2
b

σ2
b + σ2

ǫ

This is the correlation among pairs of observations on the same individual.

Potential Drawback: Variances and correlations are assumed to be constant.

Solution: Allow for heterogeneity in trends over time =⇒ random intercepts
and slopes.
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Extension: Random Intercept and Slope Model

Consider a model with intercepts and slopes that vary randomly among
individuals,

Yij = β0 + β1tij + b0i + b1itij + ǫij, j = 1, ..., ni,

where tij denotes the timing of the jth response on the ith subject.

This model posits that individuals vary not only in their baseline level of
response (when ti1 = 0), but also in terms of their changes in the response
over time (see Figure 7).

The effects of covariates (e.g., due to treatments, exposures) can be
incorporated by allowing mean of intercepts and slopes to depend on
covariates.
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Figure 7: Graphical representation of the overall and subject-specific mean
responses over time, plus errors.
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For example, consider two-group study comparing a treatment and a control

group:

Yij = β0 + β1tij + β2trti + β3tij × trti + b0i + b1itij + ǫij,

where trti = 1 if the ith individual assigned to treatment group, and trti = 0
otherwise.

The model can be re-expressed as follows for the control group and treatment

group respectively:

trt = 0: Yij = (β0 + b0i) + (β1 + b1i)tij + ǫij,

trt = 1: Yij = (β0 + β2 + b0i) + (β1 + β3 + b1i)tij + ǫij,
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Finally, consider the covariance induced by the introduction of random
intercepts and slopes.

Assuming b0i ∼ N(0, σ2
b0
), b1i ∼ N(0, σ2

b1
) (with Cov(b0i, b1i) = σb0,b1) and

ǫij ∼ N(0, σ2
ǫ ), then

Var (Yij|Xij) = Var (b0i + b1itij + ǫij)
= Var(b0i) + 2tijCov(b0i, b1i) + t2ijVar(b1i) + Var(ǫij)
= σ2

b0
+ 2tijσb0,b1 + t2ijσ

2
b1
+ σ2

ǫ .

Similarly, it can be shown that

Cov (Yij, Yik|Xij, Xik) = σ2
b0
+ (tij + tik)σb0,b1 + tijtikσ

2
b1
.

Thus, in this mixed effects model for longitudinal data the variances and
correlations (covariance) are expressed as an explicit function of time, tij.
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Linear Mixed Effects Model

Can allow any subset of the regression parameters to vary randomly.

Using vector notation, the linear mixed effects model can be expressed as

Yij = X ′
ijβ + Z ′

ijbi + ǫij,

where bi is a (q × 1) vector of random effects and Zij is the vector of covariates
linking the random effects to Yij.

Note: Components of Zij are a subset of the covariates inXij, e.g., in random
intercepts and slopes model Xij = [1 tij trti tij ∗ trtij] and Zij = [1 tij].

Specifically, any component of β can be allowed to vary randomly by simply
including corresponding covariate in Zij.

The random effects, bi, are assumed to have a multivariate normal
distribution with mean zero and covariance matrix denoted by G.
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Prediction of Random Effects

In many applications, inference is focused on fixed effects, β0, β1, ..., βp.

However, we can also “estimate” or predict subject-specific effects, bi (or
subject-specific response trajectories over time):

b̂i = E(bi|Yi, Xi; β̂, Ĝ, σ̂2
ǫ ).

This is known as “best linear unbiased predictor” (or BLUP).

In general, BLUP “shrinks” predictions towards population-averaged mean.

43

For example, consider the random intercept model

Yij = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp + bi + ǫij,

where Var (bi) = σ2
b and Var (ǫij) = σ2

ǫ .

It can be shown that the BLUP for bi is:

b̂i = w ×


 1

ni

ni∑

j=1

(Yij − µij)


+ (1− w)× 0, where w =

niσ
2
b

niσ2
b + σ2

ǫ

.

That is, a weighted-average of zero (mean of bi) and the mean “residual” for
the ith subject.

Note: Less shrinkage (toward zero) when ni is large and when σ2
b is large

relative to σ2
ǫ .
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Estimation: Maximum Likelihood

ML estimator of β0, β1, ..., βp is the generalized least squares (GLS) estimator
and depends on covariance among the repeated measures,

β̂ =

{
N∑

i=1

(
X ′

iΣ
−1
i Xi

)
}−1

N∑

i=1

(
X ′

iΣ
−1
i yi

)
,

where Σi = Cov(Yi).

This is a generalization of the ordinary least squares (OLS) estimator used
in standard linear regression.

In general, there is no simple expression for ML estimator of the covariance
- requires iterative techniques.

Because ML estimation of covariance is known to be biased in small samples,
use restricted ML (REML) estimation instead.
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Case Study: Influence of Menarche on Changes in Body

Fat

• Prospective study on body fat accretion in a cohort of 162 girls from the
MIT Growth and Development Study.

• At start of study, all the girls were pre-menarcheal and non-obese

• All girls were followed over time according to a schedule of annual
measurements until four years after menarche.

• The final measurement was scheduled on the fourth anniversary of their
reported date of menarche.

• At each examination, a measure of body fatness was obtained based on
bioelectric impedance analysis.
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Consider an analysis of the changes in percent body fat before and after
menarche.

For the purposes of these analyses “time” is coded as time since menarche
and can be positive or negative.

Note: measurement protocol is the same for all girls.

Study design is almost “balanced” if timing of measurement is defined as
time since baseline measurement.

It is inherently unbalanced when timing of measurements is defined as time
since a girl experienced menarche.
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Figure 8: Timeplot of percent body fat against time, relative to age of
menarche (in years).
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Consider hypothesis that %body fat accretion increases linearly with age,
but with different slopes before/after menarche.

We assume that each girl has a piecewise linear spline growth curve with a
knot at the time of menarche (see Figure 9).

Each girl’s growth curve can be described with an intercept and two slopes,
one slope for changes in response before menarche, another slope for changes
in response after menarche.

Note: the knot is not a fixed age for all subjects.

Let tij denote time of the jth measurement on ith subject before or after
menarche (i.e., tij = 0 at menarche).
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Figure 9: Graphical representation of piecewise linear trajectory.
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We consider the following linear mixed effects model

E(Yij|bi) = β0 + β1tij + β2(tij)+ + b0i + b1itij + b2i(tij)+,

where (tij)+ = tij if tij > 0 and (tij)+ = 0 if tij ≤ 0.

Interpretation of model parameters:

The intercept β0 is the average %body fat at menarche (when tij = 0).

The slope β1 is the average rate of change in %body fat (per year) during
the pre-menarcheal period.
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The average rate of change in %body fat (per year) during the post-
menarcheal period is given by (β1 + β2).

Scientific Goal: Assess whether population slopes differ before and after
menarche, i.e., H0 : β2 = 0.

Similarly, (β0 + b0i) is intercept for i
th subject and is the “true” (net of ǫij)

%body fat at menarche (when tij = 0).

(β1 + b1i) is ith subject’s slope, or rate of change in %body fat during the
pre-menarcheal period.

Finally, the ith subject’s slope during the post-menarcheal period is given by
[(β1 + β2) + (b1i + b2i)].
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Interpretation of variance components:

Recall that the subject-specific slopes, (β1+ b1i), have mean β1 and variance
σ2
b1
.

Furthermore, since b1i ∼ N(0, σ2
b1
) this implies that (β1 + b1i) ∼ N(β1, σ

2
b1
).

Under the assumption of normality, we expect 95% of the subject-specific
slopes, (β1 + b1i), to lie between: β1 ± 1.96× σb1.

Variance components for b2i (and b0i) can be interpreted in similar fashion.
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Table 4: Estimated regression coefficients (fixed effects) and standard errors
for the percent body fat data.

PARAMETER ESTIMATE SE Z

INTERCEPT 21.3614 0.5646 37.84

time 0.4171 0.1572 2.65

(time)+ 2.0471 0.2280 8.98
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Table 5: Estimated covariance of the random effects and standard errors for
the percent body fat data.

PARAMETER ESTIMATE SE

Var(b0i) 45.9413 5.7393
Var(b1i) 1.6311 0.4331
Var(b2i) 2.7497 0.9635
Cov(b0i, b1i) 2.5263 1.2185
Cov(b0i, b2i) -6.1096 1.8730
Cov(b1i, b2i) -1.7505 0.5980

Var(ǫij) = σ2
ǫ 9.4732 0.5443
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Results

Estimated intercept, β̂0 = 21.36, has interpretation as the average percent
body fat at merarche (when tij = 0).

Of note, actual percent body fat at menarche is not observed.

The estimate of the population mean pre-menarcheal slope, β1, is 0.42, which
is statistically significant at the 0.05 level.

This estimated slope is rather shallow and indicates that the annual rate of
body fat accretion is less that 0.5%.
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The estimate of the population mean post-menarcheal slope, β1+β2, is 2.46
(with SE = 0.12), which is statistically significant at the 0.05 level.

This indicates that annual rate of body fat accretion is approximately 2.5%,
almost six times higher than in the pre-menarcheal period.

Based on magnitude of β̂2, relative to its standard error, slopes before and
after menarche differ (at the 0.05 level).

Thus, there is evidence that body fat accretion differs before and after
menarche.
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Estimated variance of b1i is 1.6, indicating substantial variability from girl
to girl in rates of fat accretion during the pre-menarcheal period.

For example, approximately 95% of girls have changes in percent body fat
between -2.09% and 2.92%

(
i.e., 0.42± 1.96×

√
1.63

)
.

Estimated variance of slopes post-menarche, Var(b1i + b2i), is 0.88 (or [1.63
+ 2.75 −2× 1.75]), indicating less variability in slopes after menarche.

For example, approximately 95% of girls have changes in percent body fat
between 0.62% and 4.30%

(
i.e., 2.46± 1.96×

√
0.88

)
.

Almost all girls expected to have increases post-menarche; substantially fewer
(approx. 63%) have increases pre-menarche.
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Finally, there is strong positive correlation (approximately 0.8) between
annual measurements of percent body fat.

The estimated marginal correlations among annual measurements of percent
body fat can be derived from the estimated variances and covariances among
the random effects in Table 5.

Strength of correlation declines over time, but does not decay to zero even
when measurements are taken 8 years apart (see Table 6).
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Table 6: Marginal correlations (below diagonal) among repeated measures
of percent body fat between 4 years pre- and post-menarche, with estimated
variances along main diagonal.

-4 -3 -2 -1 0 1 2 3 4

61.3
0.82 54.9
0.78 0.81 51.8
0.71 0.76 0.80 52.0
0.61 0.70 0.76 0.81 55.4
0.60 0.68 0.74 0.79 0.81 49.1
0.57 0.64 0.71 0.76 0.78 0.79 44.6
0.52 0.60 0.66 0.71 0.73 0.76 0.77 41.8
0.47 0.54 0.60 0.64 0.66 0.70 0.74 0.76 40.8
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The mixed effects model can be used to obtain estimates of each girl’s growth
trajectory over time.

Figure 10 displays estimated population mean growth curve and predicted
(empirical BLUP) growth curves for two girls.

Note: two girls differ in the number of measurements obtained (6 and 10
respectively).

A noticeable feature of the predicted growth curves is that there is more
shrinkage towards the population mean curve when fewer data points are
available.

This becomes more apparent when BLUPs are compared to ordinary least
squares (OLS) estimates based only on data from each girl (see Figure 11).
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Figure 10: Population average curve and empirical BLUPs for two randomly
selected girls.
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Figure 11: Population average curve, empirical BLUPs, and OLS predictions
for two randomly selected girls.
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Summary of Key Points

Linear mixed effects models are increasingly used for the analysis of
longitudinal data.

Introduction of random effects accounts for the correlation among repeated
measures and allows for heterogeneity of the variance over time.

In general, the random effects covariance structure is relatively parsimonious
(e.g., random intercepts and slopes model has only four parameters,
σ2
b0
, σ2

b1
, σb0,b1, and σ2

ǫ ).

Models can also be used to “estimate” (predict) subject-specific effects.
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Naumova EN, Must A & Laird NM (2001). Evaluating the impact of
“critical periods” in longitudinal studies of growth using piecewise mixed
effects models. International Journal of Epidemiology, 30, 1332–41.
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Outline

Smoothing Longitudinal Data: Semiparametric Regression

Review of Penalized Splines & Mixed Model Representation

Penalized Splines for Cross-Sectional Data

Extensions of Penalized Splines to Longitudinal Data

Illustration
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Linear Mixed Models: Potential Limitations

In earlier session, we discussed linear mixed effects models for longitudinal
data.

Models assume shape of the functional relationship between the mean
response and covariates is known.

Next, we discuss a simple extension that allows greater flexibility for the
form of the relationship.

This extension exploits connection between penalized splines and linear
mixed effects models.
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Penalized Splines (Cross-Sectional Setting)

To fix ideas, suppose we have a continuous response variable, Yi, and a single
covariate, xi obtained on N individuals (i = 1, ..., N).

Interested in underlying relationship between Yi and xi.

Consider the following model,

Yi = θ(xi) + ei,

where θ(x) is an unknown smooth regression function.

The errors, ei, are assumed to be independent with common variance σ2
e.

Goal: Estimate the regression function, θ(x), from the data at hand.
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Can estimate θ(x) based on a piecewise linear function with M knots,

Yi = β0 + β1xi + β11(xi − κ1)+ + β12(xi − κ2)+ + · · ·+ β1M(xi − κM)+ + ei,

where truncated line function (xi − κm)+ = (xi − κm) if (xi − κm) > 0 and
is equal to zero otherwise.

Can estimate regression parameters via OLS by minimizing Residual SS,

N∑

i=1

[Yi− (β̂0+ β̂1xi+ β̂11(xi−κ1)++ β̂12(xi−κ2)++ · · ·+ β̂1M(xi−κM)+)]
2.

Challenge: Choice of number and location of knots.
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Figure 12: Graphical representation of piecewise linear model for two groups,
with single knot at Time = 2.
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Penalized Splines: Essential idea is to retain a relatively large number of
knots, but constrain their influence.

Specifically, estimate the regression parameters by minimizing:

N∑

i=1

[Yi − (β0 + β1xi + β11(xi − κ1)+ + · · ·+ β1M(xi − κM)+)]
2 + λ

M∑

m=1

β2
1m.

The roughness penalty, λ
∑M

m=1 β
2
1m (for λ ≥ 0), yields a smoother fit to

the data depending on the magnitude of λ.

Larger values of λ produce smoother curve.

As λ −→ 0, corresponds to no smoothing.
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Challenge: How to choose λ?

Let the data determine the degree of smoothing.

Interestingly, if ei ∼ N(0, σ2
e), there is close connection between penalized

spline estimator of θ(xi) and linear mixed effects models.

Specifically, penalized spline estimator corresponds to REML estimator in
an equivalent linear mixed effects model.
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Expressing regression function in terms of fixed and random effects,

θ(xi) = β0 + β1xi +

M∑

m=1

am(xi − κm)+,

where random effects am ∼ N(0, σ2
a).

In this mixed model representation,

Yi = β0 + β1xi +

M∑

m=1

am(xi − κm)+ + ei,

the coefficients for the truncated line functions (xi − κm)+ are the random

effects, and can be shown that λ =
σ2
e

σ2
a
.

This mixed model representation is useful because it suggests natural ways
to estimate λ and to extend penalized splines to the longitudinal setting.
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Aside

Note we have assumed a linear spline model for θ(x).

We can consider polynomial spline models of any order. For example, a cubic

spline model with knots at κ1, ..., κM is given by

θ(xi) = β0 + β1xi + β2x
2
i + β3x

3
i +

M∑

m=1

β3m(xi − κm)3+,

where (xi − κm)3+ = [(xi − κ)+]
3.

Cubic spine models are a common choice among polynomial splines.
(Note: B-splines provide more numerically stable basis for cubic splines).

For ease of exposition, focus only on linear spline models.
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Penalized Splines for Longitudinal Data

Basic Idea: Use mixed model representation of penalized splines, but include
additional random subject effects to account for the correlation among the
repeated measures.

Consider piecewise linear function of time with M knots, κ1, ..., κM , and
randomly varying subject effect,

Yij = β0 + β1tij + β11(tij − κ1)+ + · · ·+ β1M(tij − κM)+ + bi + ǫij,

where bi ∼ N(0, σ2
b) and ǫij ∼ N(0, σ2

ǫ ).

Adding “roughness penalty”, λ
∑M

m=1 β
2
1m, mixed model representation is

θ(tij) + bi = β0 + β1tij +
M∑

m=1

am(tij − κm)+ + bi, where am ∼ N(0, σ2
a).
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Random effects, bi and am, have different roles.

The am are coefficients for the truncated line functions, (tij − κm)+, and
produce a smooth regression function, θ(tij).

Inclusion of bi allows each individual to have her own piecewise linear curve;
marginally, induces correlation among the repeated measures.

Can allow for more general patterns of covariance through inclusion of
additional random effects, e.g.,

θ(tij) + b0i + b1itij = β0 + β1tij +

M∑

m=1

am(tij − κm)+ + b0i + b1itij,

allows for heterogeneous variances and correlations that depend on tij.
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Linear mixed model representation allows great flexibility.

In many longitudinal analyses, functional form of the mean time trend cannot
be settled beforehand.

In two group setting, can incorporate group effect in a parametric fashion
and time trends in a highly non-linear, but not predetermined, way.

Consider the following model,

Yij = β0 + β1tij + β2Groupi + β3Groupi × tij

+
∑M

m=1 am(tij − κm)+ + b0i + b1itij + ǫij,

where Group = 1 for active treatment (or exposure) and 0 otherwise.
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This model allows a very general spline curve for Group = 0,

E(Yij|Groupi = 0) = β0 + β1tij +
M∑

m=1

am(tij − κm)+,

but constrains the differences between the smooth curves for the two groups
to be a simple linear function of time,

E(Yij|Groupi = 1)− E(Yij|Groupi = 0) = β2 + β3tij.

Here, β3 is the constant rate of change (over time) in the differences between
the smooth curves for the mean response in the two groups.

Assumed linearity refers to the hypothesized pattern of differences between
the group means, not to the time trends.
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Case Study: Repeated measures of progesterone

metabolite concentration during menstrual cycle

• Longitudinal data on PdG measured daily in urine from day −8 to day
15 in the menstrual cycle (day 0 denotes ovulation day)

• A sample of 22 conceptive cycles from 22 women and 29 non-conceptive
cycles from another 29 women

• Goal is to describe and compare the mean hormone profiles in the
conceptive and non-conceptive groups

• Figures 13(a) and 13(b) display time plots for the conceptive and non-
conceptive groups
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Figure 13: Time plots, with joined line segments, of log progesterone
concentration versus days of menstrual cycle for (a) women in non-conceptive
group, and (b) women in conceptive group.
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Fit separate penalized splines to data for conceptive and non-conceptive
groups.

Using mixed model representation, and with 22 knots located consecutively
from days -7 through 14,

Yij = β0 + β1tij +

22∑

m=1

am(tij − κm)+ + b0i + b1itij + ǫij,

am ∼ N(0, σ2
a), ǫij ∼ N(0, σ2

ǫ ), and

(
b0i
b1i

)
∼ N

( [
0
0

]
,

[
σ2
b0 σb0,b1

σb0,b1 σ2
b1

] )
.

Fitted functions for the two groups obtained by combining REML estimates
of β and BLUP predictions of am.
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Figure 14: Time plots, with fitted penalized spline superimposed, of log
progesterone concentration versus days of menstrual cycle for (a) women in
non-conceptive group, and (b) women in conceptive group.
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Figure 15: Plot of group differences (conceptive versus non-conceptive
group) in fitted penalized splines for log progesterone concentration during
menstrual cycle.
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Figures 14(a) and 14(b) suggest discernible differences between groups
following implantation (approx. day 7).

Figure 15 displays group differences (conceptive minus non-conceptive) in
mean log progesterone concentration over time.

Plot suggests large differences between the groups after implantation.

Plot suggests differences can be represented by a piecewise linear trend with
single knot at day 7.

Fit following semi-parametric regression model for combined data,

Yij = β0 + β1tij + β2Group + β3Group× tij + β4Group× (tij − 7)+

+
∑22

m=1 am(tij − κm)+ + b0i + b1itij + ǫij,

where Group = 1 for the conceptive group and 0 otherwise.
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Table 7: REML estimates and SEs from mixed model representation of
semiparametric regression model for log progesterone concentration.

Variable Estimate SE Z

Intercept −0.8132 0.5656 −1.44
Time 0.0162 0.0746 0.22
Group 0.1625 0.2281 0.71
Group× Time −0.0479 0.0118 −4.05
Group× (Time− 7)+ 0.2961 0.0232 12.75

Var(am) 0.0155 0.0069
Var(b0i) 0.6337 0.1287
Var(b1i) 0.0010 0.0003
Cov(b0i, b1i) 0.0039 0.0042
Var(ǫij) 0.2856 0.0127
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Results indicate that initial mean difference between two groups has declined
significantly prior to implantation (with estimated slope, β̂3 = −0.0479, Z =
−4.05, p < 0.0001).

By day 7, there is no significant difference between the two groups in mean log
progesterone concentration (β̂2+7∗β̂3 = 0.1625−7∗0.0479 = −0.1728, SE =
0.2514, Z = −0.69, p > 0.45).

Thereafter, the trajectories of mean log progesterone concentration for the
two groups depart significantly (with estimated slope, β̂3 + β̂4 = −0.0479 +
0.2961 = 0.2482, SE = 0.0203, Z = 12.3, p < 0.0001).

Figure 16 shows plot of estimated differences between two groups (conceptive
versus non-conceptive group), and 95% pointwise confidence limits.

Strongest evidence for differences between groups is during days 10-15.
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Figure 16: Plot of fitted group differences (non-conceptive versus conceptive
group), and 95% confidence limits, from semiparametric regression model.
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Summary of Key Points

Linear mixed effects models have become established methods for
longitudinal analyses.

Assume shape of the functional relationship between the mean response and
covariates is known.

Penalized splines allow greater flexibility for the form of the relationship.

Mixed model representation of penalized splines makes this extension
straightforward.

Further extensions: Subject-specific smooth curves for longitudinal data,
extensions to generalized linear mixed models for longitudinal data...
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Fitzmaurice GM, Laird NM & Ware JH (2011). Applied Longitudinal
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Cambridge, UK: Cambridge University Press.
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Extensions of Generalized Linear Models

to Longitudinal Data (Part 1)

When the response variable is categorical (e.g., binary, ordinal and count
data), generalized linear models (e.g., logistic regression) can be extended to
handle the correlated outcomes.

However, non-linear transformations of the mean response (e.g., logit) raise
additional issues concerning the interpretation of the regression coefficients.

Different approaches for accounting for the correlation lead to models having
regression coefficients with distinct interpretations.

As we will see, different models for discrete longitudinal data have somewhat
different targets of inference.
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MOTIVATING EXAMPLE

Oral Treatment of Toenail Infection

Randomized, double-blind, parallel-group, multicenter study of 294 patients
comparing 2 oral treatments (denoted A and B) for toe-nail infection.

Outcome variable: Binary variable indicating presence of onycholysis
(separation of the nail plate from the nail bed).

Patients evaluated for degree of onycholysis (separation of the nail plate from
the nail-bed) at baseline (week 0) and at weeks 4, 8, 12, 24, 36, and 48.

Interested in the rate of decline of the proportion of patients with onycholysis
over time and the effects of treatment on that rate.
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MOTIVATING EXAMPLE

Clinical trial of anti-epileptic drug progabide

(Thall and Vail, Biometrics, 1990)

Randomized, placebo-controlled study of treatment of epileptic seizures with
progabide.

Patients were randomized to treatment with progabide, or to placebo in
addition to standard therapy.

Outcome variable: Count of number of seizures

Measurement schedule: Baseline measurement during 8 weeks prior to
randomization. Four measurements during consecutive two-week intervals.

Sample size: 28 epileptics on placebo; 31 epileptics on progabide
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REVIEW OF GENERALIZED LINEAR MODELS

Generalized linear models are a class of regression models; they include the
standard linear regression model but also many other important models:

- Linear regression for continuous data

- Logistic regression for binary data

- Loglinear models for count data

Generalized linear models extend the methods of regression analysis to
settings where the outcome variable can be categorical.

In this short course, we consider extensions of generalized linear models to
longitudinal data.
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Notation for Generalized Linear Models

Assume N independent observations of a single response variable, Yi.

Associated with each response, Yi, there are p covariates, Xi1, ..., Xip.

Goal: Primarily interested in relating the mean of Yi,
µi = E(Yi|Xi1, ..., Xip), to the covariates.
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In generalized linear models:

(i) the distribution of the response is assumed to belong to a family of
distributions known as the exponential family, e.g., normal, Bernoulli,
binomial, and Poisson distributions.

(ii) A transformation of the mean response, µi, is then linearly related to the
covariates, via an appropriate link function:

g(µi) = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip,

where link function g(·) is a known function, e.g., log(µi) or logit(µi).

This implies that it is the transformed mean response that changes linearly
with changes in the values of the covariates.
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Mean and Variance of Exponential Family

Distributions

Exponential family distributions share some common statistical properties.

The variance of Yi can be expressed in terms of

Var (Yi|Xi1, ..., Xip) = φ v(µi),

where the scale parameter φ > 0.

The variance function, v(µi), describes how the variance of the response is
functionally related to µi, the mean of Yi.
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Canonical link and variance functions for the normal, Bernoulli, and Poisson
distributions.

Distribution Var. Function, v(µ) Canonical Link

Normal v(µ) = 1 Identity: µ = η

Bernoulli v(µ) = µ(1− µ) Logit: log
[

µ
(1−µ)

]
= η

Poisson v(µ) = µ Log: log(µ) = η

where η = β0 + β1X1 + β2X2 + · · ·+ βpXp.
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GENERALIZED LINEAR MODELS FOR

LONGITUDINAL DATA

Next, we focus on two general approaches for analyzing longitudinal
responses:

1. Marginal Models

2. Generalized Linear Mixed Models

These approaches can be considered extensions of generalized linear models
to correlated data.

The main emphasis will be on discrete response data, e.g., count data or
binary responses.
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MARGINAL MODELS

The basic premise of marginal models is to make inferences about population
averages.

The term ‘marginal’ is used here to emphasize that the mean response
modelled is conditional only on covariates and not on other responses or
random effects.

A feature of marginal models is that the models for the mean and the ‘within-
subject association’ (e.g., covariance) are specified separately.
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Notation

Let Yij denote response variable for ith subject on jth occasion.

Yij can be continuous, binary, or a count.

We assume there are ni repeated measurements on the ith subject and each
Yij is observed at time tij.

Associated with each response, Yij, there is a p× 1 vector of covariates, Xij.

Covariates can be time-invariant (e.g., gender) or time-varying (e.g., time
since baseline).
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Three-Part Specification of Marginal Models

1. The marginal expectation of the response, µij, depends on covariates
through a known link function

g (µij) = β0 + β1X1ij + β2X2ij + · · ·+ βpXpij.

2. The marginal variance of Yij depends on the marginal mean according to

Var (Yij|Xij) = φυ (µij)

where υ (µij) is a known ‘variance function’ and φ is a scale parameter
that may be fixed and known or may need to be estimated.
Note: For continuous response, can allow Var (Yij|Xij) = φj υ (µij).

3. The ‘within-subject association’ among the responses is a function of the
means and of additional parameters, say ααα, that may also need to be
estimated.

103

For example, when α represents pairwise correlations among responses, the
covariances among the responses depend on µij(β), φ, and α:

Cov(Yij, Yik|Xij, Xik) = s.d.(Yij) Corr(Yij, Yik|Xij, Xik) s.d.(Yik)

=
√
φ v (µij) Corr(Yij, Yik|Xij, Xik)

√
φ v (µik)

where s.d.(Yij) is the standard deviation of Yij.

In principle, can also specify higher-order moments.
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Examples of Marginal Models

Example 1. Binary responses:

1. Logit (µij) = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp.
(i.e., logistic regression)

2. Var (Yij|Xij) = µij (1− µij)
(i.e., Bernoulli variance)

3. Log OR (Yij, Yik|Xij, Xik) = αjk

(i.e., unstructured log odds ratios)
where

OR (Yij, Yik|Xij, Xik) =

Pr(Yij = 1, Yik = 1|Xij, Xik) Pr(Yij = 0, Yik = 0|Xij, Xik)

Pr(Yij = 1, Yik = 0|Xij, Xik) Pr(Yij = 0, Yik = 1|Xij, Xik)
.
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Example 2. Count data:

1. Log (µij) = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp.
(i.e., Poisson regression)

2. Var (Yij|Xij) = φµij

(i.e., extra-Poisson variance or “overdispersion” when φ > 1)

3. Corr (Yij, Yik|Xij, Xik) = αjk

(i.e., unstructured correlation)
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Interpretation of Marginal Model Parameters

The regression parameters, βββ, have ‘population-averaged’ interpretations
(‘averaging’ over individuals within subgroups of population).

For example, consider the following logistic model,

logit(µij) = logit{E(Yij|Xij)} = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp.

Interpretation of any component of β, say βk, is in terms of adjusted changes
in the transformed mean (or “population-averaged”) response for a unit
change in the corresponding covariate, say Xijk.
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When Xijk takes on some value x, the log odds of a positive response is,

log
{

Pr(Yij=1|Xij1,...,Xijk=x,...,Xijp)

Pr(Yij=0|Xij1,...,Xijk=x,...,Xijp)

}
=

β0 + β1Xij1 + · · ·+ βkx+ · · ·+ βpXijp.

Similarly, when Xijk now takes on some value x+ 1,

log
{

Pr(Yij=1|Xij1,...,Xijk=x+1,...,Xijp)

Pr(Yij=0|Xij1,...,Xijk=x+1,...,Xijp)

}
=

β0 + β1Xij1 + · · ·+ βk(x+ 1) + · · ·+ βpXijp.

−→ βk is adjusted change in log odds for unit change in Xijk.
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Statistical Inference for Marginal Models

Maximum Likelihood (ML):

Unfortunately, with discrete response data there is no simple analogue of the
multivariate normal distribution.

In the absence of a “convenient” likelihood function for discrete data, there
is no unified likelihood-based approach for marginal models.

Alternative approach to estimation - Generalized Estimating Equations (GEE).
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GENERALIZED ESTIMATING EQUATIONS

The GEE estimator of β solves the following generalized estimating equations

N∑

i=1

D′
iV

−1
i (yi − µi) = 0,

where Di = ∂µi/∂β is the “derivative” matrix and Vi is the so-called
“working” covariance matrix.

By “working” covariance matrix we mean that Vi approximates the true
underlying covariance matrix for the vector of responses Yi.

That is, Vi ≈ Cov (Yi|Xi), recognizing that Vi 6= Cov (Yi|Xi) unless the
models for the variances and the within-subject associations are correct.
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Properties of GEE estimators

1. In many cases β̂ββ is almost efficient when compared to MLE.
For example, GEE has same form as likelihood equations for multivariate
normal models and also certain models for discrete data

2. β̂ββ is consistent even if the covariance of Yi has been misspecified

3. Standard errors for β̂ββ can be obtained using so-called ‘sandwich’ estimator,
Cov(β̂) = B−1MB−1, where

B=
N∑

i=1

D′
iV

−1
i Di, M=

N∑

i=1

D′
iV

−1
i Cov (Yi|Xi)V

−1
i Di.

B and M can be estimated by replacing α, φ, and βββ by their estimates,
and replacing Cov (Yi|Xi) by (Yi − µ̂i) (Yi − µ̂i)

′
.
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Case Study: Oral Treatment of Toenail Infection

Randomized, double-blind, parallel-group, multicenter study of 294 patients
comparing 2 oral treatments (denoted A and B) for toe-nail infection.

Outcome variable: Binary variable indicating presence of onycholysis
(separation of the nail plate from the nail bed).

Patients evaluated for degree of onycholysis (separation of the nail plate from
the nail-bed) at baseline (week 0) and at weeks 4, 8, 12, 24, 36, and 48.

Interested in the rate of decline of the proportion of patients with onycholysis
over time and the effects of treatment on that rate.
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Assume that the marginal probability of onycholysis follows a logistic model,

logit{E(Yij|Xij)} = β0 + β1Monthij + β2Trti ∗Monthij

where Trt = 1 if treatment group B and 0 otherwise.

Here, we assume that Var(Yij|Xij) = µij(1− µij).

We also assume an unstructured correlation for the within-subject
association (i.e., estimate all possible pairwise correlations).
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Table 8: GEE estimates and standard errors (empirical) from marginal
logistic regression model for onycholysis data.

PARAMETER ESTIMATE SE Z

INTERCEPT -0.698 0.122 -5.74

Month -0.140 0.026 -5.36

Trt × Month -0.081 0.042 -1.94
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Results

From the output above, we would conclude that:

1. There is a suggestion of a difference in the rate of decline in the two
treatment groups (P = 0.052).

2. Over 12 months, the odds of onycholysis has decreased by a factor of 0.19
[exp(-0.14*12)] in treatment group A.

3. Over 12 months, the odds of onycholysis has decreased by a factor of 0.07
[exp(-0.221*12)] in treatment group B.

4. Odds ratio comparing 12 month decreases in risk of onycholysis between
treatments A and B is approx 2.6 (or e12∗0.081).

5. Overall, there is a significant decline over time in the prevalence of
onycholysis for all randomized patients.
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Extensions of Generalized Linear Models

to Longitudinal Data (Part 2)

So far, we have discussed marginal models for longitudinal data.

Next, we consider a second type of extension, generalized linear mixed models

(GLMMs).

We describe how these models extend the conceptual approach represented
by the linear mixed effects model (Session 2).

The basic premise is that we assume natural heterogeneity across individuals
in a subset of the regression coefficients via the introduction of random
effects.
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Generalized Linear Mixed Models

The generalized linear mixed model can be considered in two steps:

First Step: Assumes that the conditional distribution of each Yij,
given individual-specific effects bi, belongs to the exponential family with
conditional mean,

g{E(Yij|Xij, bi)} = X ′
ijβββ + Z ′

ijbi

where g(·) is a known link function and Zij is a known design vector, a subset
of Xij, linking the random effects bi to Yij.

The particular subset of the regression parameters β that vary randomly is
determined by components of Xij that comprise Zij.
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Second-Step: The bi are assumed to vary independently from one individual
to another and bi ∼ N (0, G).

Here, G is the covariance matrix for the random effects.

Note: There is an additional assumption of ‘conditional independence’.

That is, given bi, the responses Yi1, Yi2, ..., Yini
are assumed to be mutually

independent.
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Example 1:

Binary logistic model with random intercepts:

logit{E(Yij|Xij, bi)} = β0 + β1Xij1 + · · ·+ βpXijp + bi

Var(Yij|Xij, bi) = E(Yij|Xij, bi){1− E(Yij|Xij, bi)} (Bernoulli variance),

and bi ∼ N(0, σ2
b).
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Example 2:

Random coefficients (random intercepts and slopes) Poisson regression
model:

log{E(Yij|Xij, bi)} = β0 + β1tij + b0i + b1itij

Var(Yij|Xij, bi) = E(Yij|Xij, bi) (Poisson variance),

and bi ∼ N (0, G).

Note: G is the covariance matrix for b0i and b1i.
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Interpretation of Fixed Effects

GLMMs are most useful when the scientific objective is to make inferences
about individuals rather than population averages.

For example, consider the following logistic model,

logit{E(Yij|Xij, bi)} = β0 + β1Xij1 + · · ·+ βpXijp + bi

with bi ∼ N(0, σ2).

The interpretation of any component of β, say βk, is in terms of adjusted
changes in an individual’s log odds of response for a unit change in the
corresponding covariate, say Xijk.
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When Xijk takes on some value x, the log odds of a positive response is,

log
{

Pr(Yij=1|bi,Xij1,...,Xijk=x,...,Xijp)

Pr(Yij=0|bi,Xij1,...,Xijk=x,...,Xijp)

}
=

β0 + bi + β1Xij1 + · · ·+ βkx+ · · ·+ βpXijp.

Similarly, when Xijk now takes on some value x+ 1,

log
{

Pr(Yij=1|bi,Xij1,...,Xijk=x+1,...,Xijp)

Pr(Yij=0|bi,Xij1,...,Xijk=x+1,...,Xijp)

}
=

β0 + bi + β1Xij1 + · · ·+ βk(x+ 1) + · · ·+ βpXijp.

−→ βk is adjusted change in log odds for individual with propensity to
respond, bi.
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Estimation

ML estimation of βββ (and possibly φ) and G is based on the marginal or
integrated likelihood of the data

L(β, φ,G) =

N∏

i=1

∫
f(Yi|Xi, bi)f(bi)dbi

obtained by averaging over distribution of random effects, bi.

However, simple analytic solutions are rarely available.

In general, ML estimation requires numerical or Monte Carlo integration
techniques that can be computationally quite intensive.
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Case Study

Oral Treatment of Toenail Infection

Randomized, double-blind, parallel-group, multicenter study of 294 patients
comparing 2 oral treatments (denoted A and B) for toe-nail infection.

Outcome variable: Binary variable indicating presence of onycholysis
(separation of the nail plate from the nail bed).

Patients evaluated for degree of onycholysis (separation of the nail plate from
the nail-bed) at baseline (week 0) and at weeks 4, 8, 12, 24, 36, and 48.

Interested in the effect of treatment on changes in an individual’s risk of
onycholysis over time?
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Assume that the conditional probability of onycholysis follows a logistic
model,

logit {E(Yij|Xij, bi)} = β0 + β1Monthij + β2Trti ∗Monthij + bi

where Trt = 1 if treatment group B and 0 otherwise.

Here, we assume that Var(Yij|Xij, bi) = E(Yij|Xij, bi) {1− E(Yij|Xij, bi)}.

We also assume bi ∼ N(0, σ2
b).
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Table 9: ML estimates and standard errors from random effects logistic
regression model for onycholysis data.

PARAMETER ESTIMATE SE Z

INTERCEPT -1.697 0.330 -5.15

Month -0.389 0.043 -8.97

Trt × Month -0.142 0.065 -2.19

σ2
b 16.034 3.039

ML based on 100-point adaptive Gaussian quadrature.
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Results

From the output above, we would conclude that:

1. There is a significant difference in the rate of decline of risk for individuals
in the two treatment groups (P < 0.05).

2. Over 12 months, the odds of onycholysis decreases by a factor of 0.01 [or
exp(−0.389 ∗ 12)] for an individual receiving treatment A.

3. Over 12 months, the odds of onycholysis decreases by a factor of 0.002
[exp(−0.531 ∗ 12)] for an individual receiving treatment B.

4. Odds ratio comparing 12 month decreases in risk between treatments A
and B is approx 5.5 (or e12∗0.142).
Note: Approx. twice as large as corresponding odds ratio from marginal
model (OR = 2.6).
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Wrap-Up: Summary of Key Points

Linear mixed effects models particularly well-suited to analysis of highly
unbalanced longitudinal data.

Introduction of random effects accounts for correlation among repeated
measures and allows for heterogeneity of variance over time.

In general, random effects covariance structure is relatively parsimonious.

Semiparametric models: Combining mixed models with penalized spline
smoothing provides additional flexibility for modelling change over time.

Alternatively, can avoid introduction of random effects altogether; so that
Cov(Yi|Xi) = Σ, for some arbitrary structure on Σ.
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Parallel methods available for analyses of discrete longitudinal outcomes:

(a) Marginal models bypass random effects; instead allow dependence among
repeated measures via “working” covariance matrix.

(b) GLMMs extend in natural way conceptual approach of linear mixed models
via introduction of vector of random effects.

With non-linear link functions, distinction is more important.

Greater care required in choice of model for discrete longitudinal data.

With different targets of inference, different models for categorical
outcomes address subtly different questions regarding longitudinal change.
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Choice among models?

• should be guided by specific scientific question of interest

• answers to different questions will usually demand that different models
have to be applied

• different questions will often produce different, albeit compatible, answers

• “one size does not fit all”
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