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Session goals

• When and why is a marginal effect desirable?
• How can the parameters of a marginal effect be estimated?

I Can we use traditional approaches?
I What are the ‘newer’ approaches?

• What assumptions do we need, and how can we check them?
• Construction of accessible methods of estimation using

familiar statistical tools with tractable statistical properties.
• Alternative uses of the propensity score construction.
• Generalization to the case of non-binary exposures.
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Road map

1. Marginal effects in a point-source treatment setting
I Definition
I Regression and stratification

2. The propensity score: a method to recover covariate balance
I Definition
I PS stratification
I PS matching
I PS regression
I inverse probability of treatment weighting

3. Double robustness
4. Generalizing the propensity score
5. Modelling considerations
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Concept: Average Potential Outcomes

The causal (unconfounded) effect of exposure Z on outcome Y is a
measure of how much Y changes as Z is manipulated.

• Here Z is not treated as a random variable, but a manipulable
quantity that may influence Y .

• Other variables (confounders), X, may also influence Y .

• Y (z) denotes the outcome if the exposure Z is set equal to z :
I Y (z) is termed a counterfactual or potential outcome.

• A causal quantity of interest is then

E[Y (z)] =
∫

y fY (z),X(y, x) dydx

that is, an average potential outcome (APO).
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Aim

Estimate E[Y (z)] using a random sample of data

(xi, zi, yi), i = 1, . . . , n

for z in some set of values
• z ∈ {0, 1}
• z ∈ {0, 1, 2, . . . ,K}
• z ∈ (a, b)

The earlier approach to estimation using sample averaging can be
adopted to produce an estimator.
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Idealized calculation

E[Y (z)] =
∫

y fY (z),X(y, x) dydx

=

∫
y fY (z)|X(y|x)fX(x) dy dx

=

∫
y fY |Z,X(y|z, x)fX(x) dy dx

where the final line follows if there is no confounding, and we make
certain standard assumptions about the counterfactuals.

The quantity E[Y (z)] could then be estimated from a hypothetical
‘experimental’ sample of data by replacing the integral by sample
average calculation.
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Difference from earlier formulation

Note: An important difference from the earlier formulation of the
randomized study calculation is that the variables X are present, and
may also influence response.

We still seek a ‘marginal’ quantity, averaging over the distribution
of X, at this stage.
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Small problem: assumptions

Often, we do not have access to experimental data. There is no
intervention on behalf of the researcher, the data are recorded
observationally.

If we could correctly specify the model fY |Z,X(y|z, x), or at least the
conditional expectation

E[Y |Z = z,X = x]

then this would not be a problem, as we could simply use the
iterated expectation result and estimate

Ê[Y (z)] = 1
n

n∑
i=1

E[Y |Z = z,X = xi].
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Assumptions?

What assumptions do we need to get the ‘right’ answer, i.e. an
unbiased estimator of the marginal mean E[Y (z)], via regression
when data are obtained observationally?

• Correct model specification (of mean of Y given Z and X )
• No unmeasured confounding → exchangeability
• Independence → no interference
• No extrapolation → positivity
• Well-defined exposure → cannot have multiple versions of

treatment

What if we cannot satisfy the first assumption?
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Unconfounded effect estimation by design

• We can sometimes estimate the APO (or a contrast of APOs,
such as the average treatment effect: ATE) by designing a
randomized control trial.

• Recall the setting in the case of a binary exposure:
I obtain a random sample of size n of individuals from the target

population, and measure their X values;
I according to some random assignment procedure, intervene to

assign treatment Z to individuals, and measure their outcome Y ;
I the link between X and Z is broken by the random allocation.
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Unconfounded effect estimation by design

• Recall that this procedure led to the valid use of the estimators
of the ATE based on (1) and (2) from the previous section.

• The important feature of the randomized study is that we have,
for confounders X (indeed all predictors)

fX|Z(x|1) ≡ fX|Z(x|0) for all x,

or equivalently, in the case of a binary confounder,

Pr[X = 1|Z = 1] = Pr[X = 1|Z = 0].

• The distribution of X is balanced across the two exposure
groups; this renders direct comparison of the outcomes
possible. Probabilistically, X and Z are independent.
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Constructing a balanced sample

• In a non-randomized study, there is a possibility that the two
exposure groups are not balanced

fX|Z(x|1) 6= fX|Z(x|0) for some x,

or in the binary case

Pr[X = 1|Z = 1] 6= Pr[X = 1|Z = 0].

• If X influences Y also, then this imbalance renders direct
comparison of outcomes in the two groups impossible.
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Constructing a balanced sample

• While global balance may not be present, it may be that local
balance, i.e. within certain strata of the sample, may be present.

• That is, for x ∈ S say, we might have balance; within S, X is
independent of Z.

fX|Z:S(x|1 : x ∈ S) = fX|Z(x|0 : x ∈ S)

• Then, for individuals who have X values in S, there is the
possibility of direct comparison of the treated and untreated
groups.

• We might then restrict attention to causal statements relating
to stratum S.
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Constructing a balanced sample

• For discrete confounders, we might consider defining strata
where the X values are precisely matched, and then comparing
treated and untreated within those strata.

• Consider matching strata S1, . . . ,SK . We would then be able
to compute the ATE by noting that

E[Y (1)− Y (0)] =
K∑

k=1

E[Y (1)− Y (0)|X ∈ Sk]Pr[X ∈ Sk]

I E[Y (1)− Y (0)|X ∈ Sk] may be estimated nonparametrically
from the data by using (1) or (2) for data restricted to have
x ∈ Sk.

I Pr[X ∈ Sk] may be estimated using the empirical proportion of
x that lie in Sk.
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Constructing a balanced sample

• For continuous confounders, we might consider the same
strategy: consider matching strata S1, . . . ,SK . Then the
formula

E[Y (1)− Y (0)] =
K∑

k=1

E[Y (1)− Y (0)|X ∈ Sk]Pr[X ∈ Sk]

still holds.
• However we must assume a model for how
E[Y (1)− Y (0)|X ∈ Sk] varies with x for x ∈ Sk.

• In both cases, inference is restricted to the set of X space
contained in

K⋃
k=1

Sk.
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Constructing a balanced sample

• In the continuous case, the above calculations depend on the
assumption that the treatment effect is similar for x values that
lie ‘close together’ in predictor (confounder) space. However

I. Unless we can achieve exact matching, then the term ‘close
together’ needs careful consideration.

II. If X is moderate or high-dimensional, there may be insufficient
data to achieve adequate matching to facilitate the estimation of
the terms

E[Y (1)− Y (0)|X ∈ Sk];

recall that we need a large enough sample of treated and
untreated subjects in stratum Sk.

• Nevertheless, matching in this fashion is an important tool in
causal comparison.
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Balance via the propensity score

• We now come to the important concept of the propensity score
that facilitates causal comparison via a balancing approach.

• Recall: our goal is to mimic the construction of the
randomized study that facilitates direct comparison between
treated and untreated groups.

• We may not be able to achieve this globally, but possibly can
achieve it locally in strata of X space.

• The question is how to define these strata.
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Balance via the propensity score

• Recall that in the binary exposure case, balance corresponds to
being able to state that within S, X is independent of Z.

• This can be achieved if S is defined in terms of a statistic, e(X)
say. That is, we consider the conditional distribution

fX|Z,e(X)(x|z, e)

and attempt to ensure that, given e(X) = e, Z is independent of
X, so that within strata of e(X), the treated and untreated
groups are directly comparable.
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Balance via the propensity score

• By Bayes theorem, for z = 0, 1, we have that

fX|Z,e(X)(x|z, e) =
fZ|X,e(X)(z|x, e)fX|e(X)(x|e)

fZ|e(X)(z|e)

• Now, as Z is binary, we must be able to write the density in the
denominator as

fZ|e(X)(z|e) = p(e)z(1− p(e))1−z z ∈ 0, 1

where p(e) is a probability, a function of the fixed value e, and
where 0 < p(e) < 1.
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Balance via the propensity score

• Therefore, in order to make the density fX|Z,e(X)(x|z, e)
functionally independent of z, and so achieve the independence
we seek, we need

fZ|X,e(X)(z|x, e) = p(e)z(1− p(e))1−z z ∈ 0, 1.

• But e(X) is a function of X, so automatically we have that

fZ|X,e(X)(z|x, e) ≡ fZ|X(z|x).

Therefore, we require that

fZ|X(z|x) = fZ|X(z|x, e) = p(e)z(1− p(e))1−z ≡ fZ|e(X)(z|e)

for all relevant z, x.
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Balance via the propensity score

• This can be achieved by choosing the statistic

e(x) = PrZ|X [Z = 1|x]

and setting p(.) to be the identity function, so that

fZ|X(z|x) = ez(1− e)1−z z = 0, 1.

• More generally, choosing e(x) to be some monotone transform
of PrZ|X [Z = 1|x] would also achieve the same balance.

• The corresponding random variable e(X) defines the strata via
which the causal calculation can be considered.
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Balance via the propensity score

• The function e(x) defined in this way is the propensity score[1] .
It has the following important properties
(i) as seen above, it is a balancing score; conditional on e(X), X and

Z are independent.
(ii) it is a scalar quantity, irrespective of the dimension of X.
( iii) in noting that for balance we require that

fZ|X(z|x) ≡ fZ|e(X)(z|e),

the above construction demonstrates that if ẽ(X) is another
balancing score, then e(X) is a function of ẽ(X). That is, e(X) is
the ‘coarsest’ balancing score.

[1]see Rosenbaum & Rubin (1983), Biometrika
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Evaluating the propensity score

• To achieve balance we must have

e(X) = Pr[Z = 1|X]

correctly specified; that is, for confounders X, we must precisely
specify the model Pr[Z = 1|X].

I If X comprises entirely discrete components, then we may be
able to estimate Pr[Z = 1|X] entirely nonparametrically, and
satisfactorily if the sample size is large enough.

I If X has continuous components, it is common to use
parametric modelling, with

e(X;α) = Pr[Z = 1|X;α].

Balance then depends on correct specification of this model.
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Unconfoundedness given the propensity score

• The assumption of ‘no unmeasured confounders’ amounts to
assuming that the potential outcomes are jointly independent of
exposure assignment given the confounders, that is

{Y (0),Y (1)} ⊥⊥ Z | X.

• With a correctly specified propensity score, we now have that

Y (z) ⊥⊥ Z | e(X) for all z.
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Estimation using the propensity score

• We now consider the same stratified estimation strategy as
before, but using e(X) instead X to stratify.

• Consider strata S1, . . . ,SK defined via e(X). In this case, recall
that

0 < e(X) < 1

so we might consider an equal quantile partition, say using
quintiles.

• Then we have

E[Y (1)−Y (0)] =
K∑

k=1

E[Y (1)−Y (0)|e(X) ∈ Sk]Pr[e(X) ∈ Sk]

still holds approximately if the Sk are small enough.
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Estimation using the propensity score

• This still requires us to be able to estimate

E[Y (1)− Y (0)|e(X) ∈ Sk]

which requires us to have a sufficient number of treated and
untreated individuals with e(X) ∈ Sk to facilitate the ‘direct
comparison’ within this stratum.

• If the expected responses are constant across the stratum, the
formulae (1) and (2) may be used.
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Matching

The derivation of the propensity score indicates that it may be used
to construct matched individuals or groups that can be compared
directly.

• if two individuals have precisely the same value of e(x), then
they are exactly matched;

• if one of the pair is treated and the other untreated, then their
outcomes can be compared directly, as any imbalance between
their measured confounder values has been removed by the fact
that they are matched on e(x);

• this is conceptually identical to the standard procedure of
matching in two-group comparison.
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Matching

For an exactly matched pair (i1, i0), treated and untreated
respectively, the quantity

Yi1 − Yi0

is an unbiased estimate of the ATE

E[Y (1)− Y (0)];

more typically we might choose m such matched pairs, usually with
different e(x) values across pairs, and use the estimate

1
m

m∑
i=1

(Yi1 − Yi0)
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Matching

Exact matching is difficult to achieve, therefore we more commonly
attempt to achieve approximate matching:

• may match one treated to M untreated (1 : M matching)
• caliper matching;
• nearest neighbour/kernel matching;
• matching with replacement.

Most standard software packages have functions that provide
automatic matching using a variety of methods.
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Propensity Score Regression

Up to this point we have considered using the propensity score for
stratification, that is, to produce directly comparable groups of
treated and untreated individuals.

Causal comparison can also be carried out using regression
techniques: that is, we consider building an estimator of the APO
by regressing the outcome on a function of the exposure and the
propensity score.

Regressing on the propensity score is a means of controlling the
confounding.
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Propensity Score Regression

If we construct a model

E[Y |Z = z, e(Z,X) = e] = µ(z, e)

then because potential outcomes Y (z) and Z are independent given
e(Z,X), we have

E[Y (z)|e(Z,X) = e] = E[Y |Z = z, e(z,X) = e] = µ(z, e)

and therefore

E[Y (z)] = Ee(z,X)[E[Y |Z = z, e(z,X)]] = Ee(z,X)[µ(z, e(z,X))].
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Propensity Score Regression

That is, to estimate the APO, we might
• fit the propensity score model e(Z,X) to the observed

exposure and confounder data by regressing Z on X;
• fit the conditional outcome model µ(z, e) using the fitted
e(Z,X) values, ê(zi, xi);

• for each z of interest, estimate the APO by

1
n

n∑
i=1

µ̂(z, ê(z, xi)).
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Propensity Score Regression

If the propensity function e(Z,X) ≡ e(X), we proceed similarly,
and construct a model

E[Y |Z = z, e(X) = e] = µ(z, e)

then

E[Y (z)|e(X) = e] = E[Y |Z = z, e(X) = e] = µ(z, e)

and therefore

E[Y (z)] = Ee(X)[E[Y |Z = z, e(X)]] = Ee(X)[µ(z, e(X))].
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Propensity Score Regression

To estimate the APO:
• fit the propensity score model e(X) to the observed exposure

and confounder data by regressing Z on X;
• fit the conditional outcome model µ(z, e) using the fitted e(X)

values, ê(xi);
• for each z of interest, estimate the APO by

1
n

n∑
i=1

µ̂(z, ê(xi)).
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Example: Binary Exposure

We specify
• e(X;α) = Pr[Z = 1|X, α] then regress Z on X to obtain α̂ and

fitted values ê(X) ≡ e(X; α̂).
• E[Y |Z = z, e(X) = e;β] = µ(z, e;β) and estimate this model

by regressing yi on zi and ê(xi). For example, we might have
that

E[Y |Z = zi, e(Xi) = ei;β] = β0 + β1zi + β2ei.

This returns β̂.
We finally compute the predictions under this model, and average
them to obtain the APO estimate

Ê[Y (z)] = 1
n

n∑
i=1

µ(z, ê(xi); β̂).
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Example: Binary Exposure

We then compute the predictions under this model, and average
them to obtain the APO estimate

Ê[Y (z)] = 1
n

n∑
i=1

µ(z, ê(z, xi); β̂).

Note that here the propensity terms that enter into µ are computed
at the target z values, and

not the observed exposure values.
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Propensity Score Regression

These procedures require us to make two modelling choices:
• the propensity model, e(Z,X) or e(X);
• the outcome mean model µ(z, e).

Note that both models must be correctly specified for consistent
inference; however, the resulting estimators often have low
variability compared to competing estimators.

Misspecification of the outcome mean model will lead to bias; this
model needs to capture the outcome to exposure and propensity
function relationship correctly.
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Inverse probability weighting

If we could intervene at the population level to set Z = z for all
individuals independently of their X value, we might rewrite
E[Y (z)] as

E[Y (z)] =
∫

y1z(z) fY (z),X(y, x) dy dz dx

and take a random sample from the population with density

1z(z) fY (z),X(y, x) ≡ 1z(z) fY |Z,X(y|z, x)fX(x).

We could then construct the moment estimate

Ê[Y (z)] = 1
n

n∑
i=1

yi

as zi = z for all i.
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Average potential outcome: Experimental data

In a randomized (experimental) study, suppose that exposure Z = z
is assigned with probability determined by fZ(z). Then

E[Y (z)] =

∫
y 1z(z) fY |Z,X(y|z, x)fX(x)fZ(z) dy dz dx∫

1z(z)fZ(z) dz

This suggests the Monte Carlo estimates

Ê[Y (z)] =

n∑
i=1

1z(zi)yi
n∑

i=1
1z(zi)

or Ê[Y (z)] = 1
nfZ(z)

n∑
i=1

1z(zi)yi
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Average potential outcome

Commonly, we want to carry out a comparison of average potential
outcomes at different values of z, e.g.:

Ê[Y (1)− Y (0)] =

n∑
i=1

11(zi)yi
n∑

i=1
1=1(zi)

−

n∑
i=1

10(z1)yi
n∑

i=1
10(zi)

or

Ê[Y (1)− Y (0)] =
1

nfZ(1)

n∑
i=1

11(zi)yi −
1

nfZ(0)

n∑
i=1

10(zi)yi.
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Average potential outcome: Observational data
Denote by PE the probability measure for samples drawn under the
experimental measure corresponding to the density

f EY |Z,X(y|z, x)f
E
X (x)f EZ (z)

Now consider the case where the data arise from the observational
(non-experimental) measure PO(dy, dz, dx). We have

E[Y (z)] = 1
f EZ (z)

∫
y1z(z) PE(dy, dz, dx)

=
1

f EZ (z)

∫
y1z(z)

PE(dy, dz, dx)
PO(dy, dz, dx)︸ ︷︷ ︸

1

PO(dy, dz, dx)

In terms of densities 1 becomes

f EY |Z,X(y|z, x)f
E
Z (z)f EX (x)

f OY |Z,X(y|z, x)f
O
Z|X(z|x)f

O
X (x)

=
f EY |Z,X(y|z, x)
f OY |Z,X(y|z, x)

×
f EZ (z)

f OZ|X(z|x)
×

f EX (x)
f OX (x)
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Estimation
This suggests the (nonparametric) estimators

Ê[Y (z)] = 1
n

n∑
i=1

1z(Zi)Yi

f OZ|X(Zi|Xi)
(IPW0)

which is unbiased, or

Ê[Y (z)] =

n∑
i=1

1z(Zi)Yi

f OZ|X(Zi|Xi)

n∑
i=1

1z(Zi)

f OZ|X(Zi|Xi)

(IPW)

which is consistent, each provided f OZ|X(.|.) correctly specifies the
conditional density of Z given X for all (z, x).

The inverse probability weighting constructs a pseudo-population
in which there are no imbalances on measured covariates between
the exposure groups.
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Assumptions

What assumptions do we need to get the ‘right’ answer, i.e. an
unbiased estimator of the marginal mean E[Y (z)], via IPW?

• Correct model specification (of mean of Z given X )
• No unmeasured confounding
• Independence
• No extrapolation
• Well-defined exposure
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Parametric modelling: two-stage approach

In the formulation, the nonparametric models

f OZ|X(z|x) µ(z, x)

are commonly replaced by parametric models

f OZ|X(z|x;α) µ(z, x;β) =
∫

y f OY |Z,X(y|z, x;β) dy.

Parameters (α, β) are estimated from the observed data by
regressing

• Stage I: Z on X using (zi, xi), i = 1, . . . , n.
• Stage II: Y on (Z,X) using (yi, zi, xi), i = 1, . . . , n.

and using plug-in version of (IPW).
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Double robustness

• The IPW is popular, perhaps unduly so given that it is provably
less efficient than PS regression.

• Can we improve upon it?
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Double robustness

The IPW can be augmented. Note that

E[Y (z)] = E[Y (z)− µ(z,X)] + E[µ(z,X)]

where µ(z, x) = E[Y |Z = z,X = x].

This gives the alternate estimator

Ê[Y (z)] = 1
n

n∑
i=1

1z(Zi)(Yi − µ(Zi,Xi))

f OZ|X(Zi|Xi)
+

1
n

n∑
i=1

µ(z,Xi).

(AIPW)
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Doubly robust IPW

Equation (AIPW) is doubly robust (i.e. consistent even if one of
f OZ|X(z|x) and µ(z, x) is misspecified).

• If µ(z,Xi) is correctly specified, then E[Yi − µ(Zi,Xi)]→ 0,
and the first term in the augmented estimator disappears

(asymptotically), leaving the term
1
n

n∑
i=1

µ(z,Xi) which is

consistent for E[Y (z)].

• If f OZ|X(Zi|Xi) is correctly specified, then
1z(Zi)

f OZ|X(Zi|Xi)
→ 1, and

so
1
n

n∑
i=1

1z(Zi)(−µ(Zi,Xi))

f OZ|X(Zi|Xi)
+

1
n

n∑
i=1

µ(z,Xi)→ 0,

leaving
1
n

n∑
i=1

1z(Zi)Yi

f OZ|X(Zi|Xi)
, which is again consistent.

Further, VarAIPW ≤ VarIPW.
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Alternative view of augmentation

Scharfstein et al. (1999), Bang & Robins (2005) write the estimating
equation yielding (AIPW) as

n∑
i=1

1z(Zi)

f OZ|X(Zi|Xi)
(Yi − µ(Zi,Xi)) +

n∑
i=1

{µ(z,Xi)− µ(z)} = 0
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Alternative view of augmentation (cont.)

The first summation is a component of the score obtained when
performing OLS regression for Y with mean function

µ(z, x) = µ0(z, x) + ε
1z(z)

f OZ|X(z|x)
.

and µ0(z, x) is a conditional mean model, and ε is a regression
coefficient associated with the derived predictor

1z(z)
f OZ|X(z|x)

.
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Alternative view of augmentation

Therefore, estimator (AIPW) can be obtained by regressing Y on
(X,Z) for fixed z using the mean specification µ(z, x), and forming
the estimator

1
n

n∑
i=1

{
µ0(Zi,Xi) + ε̂

1z(Zi)

f OZ|X(Zi|Xi)

}
.

In a parametric model setting, this becomes

1
n

n∑
i=1

{
µ0(Zi,Xi; β̂) + ε̂

1z(Zi)

f OZ|X(Zi|Xi; α̂)

}

where α is estimated from Stage (I), and β is estimated along with ε
in the secondary regression.
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Augmentation and contrasts

The equivalent to (AIPW) for estimating the ATE for binary
treatment

E[Y (1)]− E[Y (0)]

is merely Ê[Y (1)]− Ê[Y (0)] or

1
n

n∑
i=1

[
11(Zi)

f OZ|X(1|Xi)
− 10(Zi)

f OZ|X(0|Xi)

]
(Yi − µ(Zi,Xi))

+
1
n

n∑
i=1

{µ(1,Xi)− µ(0,Xi)} .
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Augmentation and contrasts

Therefore we can repeat the above argument and base the contrast
estimator on the regression of Y on (X,Z) using the mean
specification

µ(z, x) = µ0(z, x) + ε

[
11(z)

f OZ|X(1|x)
− 10(z)

f OZ|X(0|x)

]
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Beyond binary exposures

The theory developed above extends beyond the case of binary
exposures.

Recall that we require balance to proceed with causal comparisons;
essentially, with strata defined using X or e(X), the distribution of
X should not depend on Z.

We seek a scalar statistic such that, conditional on the value of that
statistic, X and Z are independent. In the case of general exposures,
we must consider balancing scores that are functions of both Z and
X.

53



Beyond binary exposures

For a balancing score b(Z,X), we require that

X ⊥ Z | b(Z,X).

We denote B = b(Z,X) for convenience.

Consider the conditional distribution fZ|X,B(z|x, b): we wish to
demonstrate that

fZ|X,B(z|x, b) = fZ|B(z|b) for all z, x, b.

That is, we require that B completely characterizes the conditional
distribution of Z given X.
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Beyond binary exposures

This can be achieved by choosing the statistic

b(z, x) = fZ|X(z|x)

in line with the choice in the binary case.

The balancing score defined in this way is termed the

Generalized Propensity Score

which is a balancing score for general exposures.
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Beyond binary exposures

Note, however, that this choice that mimics the binary exposure
case is not the only one that we might make. The requirement

fZ|X,B(z|x, b) = fZ|B(z|b)

for all relevant z, x is met if we define b(Z,X) to be any sufficient
statistic that characterizes the conditional distribution of Z given X.

It may be possible, for example, to choose functions purely of X.
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Beyond binary exposures

Normally distributed exposures

Suppose that continuous valued exposure Z is distributed as

Z|X = x ∼ Normal(xα, σ2)

for row-vector confounder X. We have that

fZ|X(z|x) =
1√

2πσ2
exp

{
− 1

2σ2 (z− xα)2
}
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Beyond binary exposures

Normally distributed exposures

We might therefore choose

b(Z,X) =
1√

2πσ2
exp

{
− 1

2σ2 (Z − Xα)2
}
.

However, the linear predictor

b(X;α) = Xα

also characterizes the conditional distribution of Z given X; if we
know that xα = b, then

Z|X = x ≡ Z|B = b ∼ Normal(b, σ2).

In both cases, parameters α are to be estimated.
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Beyond binary exposures

The generalized propensity score inherits all the properties of the
standard propensity score;

• it induces balance;
• if the potential outcomes and exposure are independent given
X under the unconfoundeness assumption, they are also
independent given b(Z,X).

The generalized propensity score can then be used in regression,
weighting, matching or stratification approaches.
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Key considerations

In light of the previous discussions, in order to facilitate causal
comparisons, there are several key considerations that practitioners
must take into account.

1. The importance of no unmeasured confounding.

When considering the study design, it is essential for valid
conclusions to have measured and recorded all confounders.
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Key considerations (cont.)

2. Model construction for the outcome regression.
I ideally, the model for the expected value of Y given Z and X,
µ(z, x), should be correctly specified, that is, correctly capture
the relationship between outcome and the other variables.

I if this can be done, then no causal adjustments are necessary.
I conventional model building techniques (variable selection) can

be used; this will prioritize predictors of outcome and therefore
will select all confounders;

I however, in finite sample, this method may omit weak
confounders that may lead to bias.
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Key considerations (cont.)

3. Model construction for the propensity score.
Ideally, the model for the (generalized) propensity score, e(x)
or b(z, x), should be correctly specified, that is, correctly
capture the relationship between the exposure and the
confounders. We focus on
3.1 identifying the confounders;
3.2 ignoring the instruments: instruments do not predict the

outcome, therefore cannot be a source of bias (unless there is
unmeasured confounding) - however they can increase the
variability of the resulting propensity score estimators.

3.3 the need for the specified propensity model to induce balance;
3.4 ensuring positivity, so that strata constructed from the

propensity score have sufficient data within them to facilitate
comparison;

3.5 effective model selection.
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Key considerations (cont.)

Note: Conventional model selection techniques (stepwise
selection, selection via information criteria, sparse selection)
should not be used when constructing the propensity score.

This is because such techniques prioritize the accurate
prediction of exposure conditional on the other predictors;
however, this is not the goal of the analysis.

These techniques may merely select strong instruments and
omit strong predictors of outcome that are only weakly
associated with exposure.
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Key considerations (cont.)

Note: An apparently conservative approach is to build rich
(highly parameterized) models for both µ(z, x) and e(x).

This approach prioritizes bias elimination at the cost of
variance inflation for the resulting estimators.

Note: Statistical approaches to model selection (or ‘causal
discovery’) are no substitute for expert, subject-area knowledge
relating to the likely data generating mechanisms.
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Key points: Summary

• A marginal summary attempts to answer questions relevant to
policy makers: what is the expected outcome, averaged over the
covariate distribution in my population?

• Such questions help to avoid the ‘trap’ of contrasting those
who are observed to be treated and untreated, as these may be
very different (w.r.t confounding variables) groups of
individuals.

• To recover a marginal summary, we need to restore, or create,
balance on covariates between the treatment groups.

• We can only restore balance on covariates that we have
measured. It is crucial to understand the context of the
question to begin to assess whether all confounders have been
measured.
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Key points: Summary

• The propensity score can be used in as part of an adjustment
procedure in various ways that utilize standard statistical tools.

I regression;
I weighting;
I weighted regression.

• The propensity score for binary exposures can be extended to
more general settings based on the balancing principle

I generalized propensity score.
• some consideration of variable or model selection in

constructing regression procedures is necessary.
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